The 3D Navier-Stokes Problem

被引:70
|
作者
Doering, Charles R. [1 ,2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
incompressible Newtonian fluid mechanics; initial value problem; uniqueness of solutions; regularity of solutions; vortex stretching; turbulence; ENERGY-DISSIPATION RATE; WEAK SOLUTIONS; REGULARITY; EQUATIONS; FLOW;
D O I
10.1146/annurev.fluid.010908.165218
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is not known whether the three-dimensional (3 D) incompressible Navier-Stokes equations possess unique smooth (continuously differentiable) solutions at high Reynolds numbers. This problem is quite important for basic science, practical applications, and numerical computations. This review presents a selective survey of die current state of die mathematical theory, focusing oil the technical source of difficulties encountered with the construction of smooth solutions. It also highlights physical phenomena behind the mathematical challenges.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 50 条
  • [1] On the stationary Navier-Stokes problem in 3D exterior domains
    Coscia, Vincenzo
    Russo, Remigio
    Tartaglione, Alfonsina
    APPLICABLE ANALYSIS, 2020, 99 (09) : 1485 - 1506
  • [2] On the Cauchy problem for 3D Navier-Stokes helical vortex filament
    Gancedo, Francisco
    Hidalgo-Torne, Antonio
    ADVANCES IN MATHEMATICS, 2025, 471
  • [3] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 271 - 274
  • [4] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [5] 3D unsteady Navier-Stokes problem with memory and subdifferential boundary condition
    Boukrouche, Mandi
    Paoli, Laetitia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (02) : 1211 - 1237
  • [6] The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow
    Gerard-Varet, David
    Hillairet, Matthieu
    Wang, Chao
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (01): : 1 - 38
  • [7] 3D STEADY COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Pokorny, Milan
    Mucha, Piotr B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (01): : 151 - 163
  • [8] REGULARITY CONDITIONS FOR THE 3D NAVIER-STOKES EQUATIONS
    Fan, Jishan
    Gao, Hongjun
    QUARTERLY OF APPLIED MATHEMATICS, 2009, 67 (01) : 195 - 199
  • [9] Partial Regularity for the 3D Navier-Stokes Equations
    Robinson, James C.
    MATHEMATICAL ANALYSIS OF THE NAVIER-STOKES EQUATIONS, 2020, 2254 : 147 - 192
  • [10] Asymptotic stability for the 3D Navier-Stokes equations
    Zhou, Y
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) : 323 - 333