A new generalization of the Takagi function

被引:0
作者
Okamura, Kazuki [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
The Takagi function; The Hausdorff dimension; Differentiability; Modulus of continuity; NOWHERE-DIFFERENTIABLE FUNCTION;
D O I
10.1016/j.jmaa.2015.09.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-parameter family of functions {F(t, x)}(t) on [0,1] and partial derivatives partial derivative F-k(t)(t,x) with respect to the parameter t. Each function of the class is defined by a certain pair of two square matrices of order two. The class includes the Lebesgue singular functions and other singular functions. Our approach to the Takagi function is similar to Hata and Yamaguti. The class of partial derivatives partial derivative F-k(t)(t, x) includes the original Takagi function and some generalizations. We consider real-analytic properties of partial derivative F-k(t)(t, x) as a function of x, specifically, differentiability, the Hausdorff dimension of the graph, the asymptotics around dyadic rationals, variation, a question of local monotonicity and a local modulus of continuity. Our results are extensions of some results for the original Takagi function and some generalizations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:652 / 679
页数:28
相关论文
共 16 条
[1]   Extreme values of some continuous nowhere differentiable functions [J].
Allaart, PC ;
Kawamura, K .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :269-295
[2]   The improper infinite derivatives of Takagi's nowhere-differentiable function [J].
Allaart, Pieter C. ;
Kawamura, Kiko .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (02) :656-665
[3]   VANDERWAERDEN CONTINUOUS NOWHERE DIFFERENTIABLE FUNCTION [J].
BILLINGSLEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (09) :691-691
[4]   Nowhere monotone functions and functions of nonmonotonic type [J].
Brown, JB ;
Darji, UB ;
Larsen, EP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :173-182
[5]   Singular Functions with Applications to Fractal Dimensions and Generalized Takagi Functions [J].
de Amo, E. ;
Diaz Carrillo, M. ;
Fernandez-Sanchez, J. .
ACTA APPLICANDAE MATHEMATICAE, 2012, 119 (01) :129-148
[6]  
De G. Rham, 1956, REND SEM MAT U POLIT, V16, P101
[7]  
Hata M., 1984, Jpn. J. Appl. Math, V1, P183, DOI [10.1007/BF03167867, DOI 10.1007/BF03167867]
[8]  
KONO N, 1987, ACTA MATH HUNG, V49, P315
[9]  
Kruppel M., 2007, ROSTOCK MATH K, V62, P41
[10]   ON THE HAUSDORFF DIMENSION OF SOME GRAPHS [J].
MAULDIN, RD ;
WILLIAMS, SC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (02) :793-803