A Multivariate Computational Method to Analyze High-Content RNAi Screening Data

被引:9
作者
Rameseder, Jonathan [1 ,2 ]
Krismer, Konstantin [1 ]
Dayma, Yogesh [1 ]
Ehrenberger, Tobias [3 ]
Hwang, Mun Kyung [1 ]
Airoldi, Edoardo M. [4 ,5 ,6 ]
Floyd, Scott R. [1 ,7 ]
Yaffe, Michael B. [1 ,6 ,7 ]
机构
[1] MIT, Koch Inst Integrat Canc Biol, Cambridge, MA 02139 USA
[2] MIT, Computat Syst Biol Initiat, Cambridge, MA 02139 USA
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[4] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[5] Harvard Univ, FAS Ctr Syst Biol, Cambridge, MA 02138 USA
[6] Broad Inst MIT & Harvard, Cambridge, MA USA
[7] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
high-content screening; RNAi screening; multivariate data analysis; feature selection; hit identification; HIDDEN COMPONENTS; SINGLE-CELL; DNA-REPAIR; IDENTIFICATION; PREDICTION;
D O I
10.1177/1087057115583037
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-content screening (HCS) using RNA interference (RNAi) in combination with automated microscopy is a powerful investigative tool to explore complex biological processes. However, despite the plethora of data generated from these screens, little progress has been made in analyzing HC data using multivariate methods that exploit the full richness of multidimensional data. We developed a novel multivariate method for HCS, multivariate robust analysis method (M-RAM), integrating image feature selection with ranking of perturbations for hit identification, and applied this method to an HC RNAi screen to discover novel components of the DNA damage response in an osteosarcoma cell line. M-RAM automatically selects the most informative phenotypic readouts and time points to facilitate the more efficient design of follow-up experiments and enhance biological understanding. Our method outperforms univariate hit identification and identifies relevant genes that these approaches would have missed. We found that statistical cell-to-cell variation in phenotypic responses is an important predictor of hits in RNAi-directed image-based screens. Genes that we identified as modulators of DNA damage signaling in U2OS cells include B-Raf, a cancer driver gene in multiple tumor types, whose role in DNA damage signaling we confirm experimentally, and multiple subunits of protein kinase A.
引用
收藏
页码:985 / 997
页数:13
相关论文
共 32 条
[1]   Quantitative morphological signatures define local signaling networks regulating cell morphology [J].
Bakal, Chris ;
Aach, John ;
Church, George ;
Perrimon, Norbert .
SCIENCE, 2007, 316 (5832) :1753-1756
[2]   RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells [J].
Chia, Joanne ;
Goh, Germaine ;
Racine, Victor ;
Ng, Susanne ;
Kumar, Pankaj ;
Bard, Frederic .
MOLECULAR SYSTEMS BIOLOGY, 2012, 8
[3]  
Cho E. -A., 2014, MOL CANCER, V13, P1
[4]   Systems survey of endocytosis by multiparametric image analysis [J].
Collinet, Claudio ;
Stoeter, Martin ;
Bradshaw, Charles R. ;
Samusik, Nikolay ;
Rink, Jochen C. ;
Kenski, Denise ;
Habermann, Bianca ;
Buchholz, Frank ;
Henschel, Robert ;
Mueller, Matthias S. ;
Nagel, Wolfgang E. ;
Fava, Eugenio ;
Kalaidzidis, Yannis ;
Zerial, Marino .
NATURE, 2010, 464 (7286) :243-U123
[5]   Robust hit identification by quality assurance and multivariate data analysis of a high-content, cell-based assay [J].
Duerr, Oliver ;
Duval, Francois ;
Nichols, Anthony ;
Lang, Paul ;
Brodte, Annette ;
Heyse, Stephan ;
Besson, Dominique .
JOURNAL OF BIOMOLECULAR SCREENING, 2007, 12 (08) :1042-1049
[6]   The bromodomain protein Brd4 insulates chromatin from DNA damage signalling [J].
Floyd, Scott R. ;
Pacold, Michael E. ;
Huang, Qiuying ;
Clarke, Scott M. ;
Lam, Fred C. ;
Cannell, Ian G. ;
Bryson, Bryan D. ;
Rameseder, Jonathan ;
Lee, Michael J. ;
Blake, Emily J. ;
Fydrych, Anna ;
Ho, Richard ;
Greenberger, Benjamin A. ;
Chen, Grace C. ;
Maffa, Amanda ;
Del Rosario, Amanda M. ;
Root, David E. ;
Carpenter, Anne E. ;
Hahn, William C. ;
Sabatini, David M. ;
Chen, Clark C. ;
White, Forest M. ;
Bradner, James E. ;
Yaffe, Michael B. .
NATURE, 2013, 498 (7453) :246-+
[7]   STRING v9.1: protein-protein interaction networks, with increased coverage and integration [J].
Franceschini, Andrea ;
Szklarczyk, Damian ;
Frankild, Sune ;
Kuhn, Michael ;
Simonovic, Milan ;
Roth, Alexander ;
Lin, Jianyi ;
Minguez, Pablo ;
Bork, Peer ;
von Mering, Christian ;
Jensen, Lars J. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D808-D815
[8]   Clustering phenotype populations by genome-wide RNAi and multiparametric imaging [J].
Fuchs, Florian ;
Pau, Gregoire ;
Kranz, Dominique ;
Sklyar, Oleg ;
Budjan, Christoph ;
Steinbrink, Sandra ;
Horn, Thomas ;
Pedal, Angelika ;
Huber, Wolfgang ;
Boutros, Michael .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[9]   The DNA damage response: Ten years after [J].
Harper, J. Wade ;
Elledge, Stephen J. .
MOLECULAR CELL, 2007, 28 (05) :739-745
[10]   Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks [J].
Huang, Shao-shan Carol ;
Fraenkel, Ernest .
SCIENCE SIGNALING, 2009, 2 (81) :ra40