ISOMETRIES OF COMBINATORIAL BANACH SPACES

被引:11
作者
Brech, C. [1 ]
Ferenczi, V [1 ,2 ]
Tcaciuc, A. [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Sorbonne Univ, UPMC, Inst Math Jussieu, Equipe Anal Fonct, Case 247,4 Pl Jussieu, F-75252 Paris 05, France
[3] MacEwan Univ, Dept Math & Stat, 10700-104 Ave, Edmonton, AB T5J 4S2, Canada
基金
巴西圣保罗研究基金会;
关键词
Regular families; combinatorial spaces; isometry group; Schreier families;
D O I
10.1090/proc/15122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases.
引用
收藏
页码:4845 / 4854
页数:10
相关论文
共 11 条
[1]  
Antunes L., PREPRINT
[2]  
ARgYROS S. A., 2005, Ramsey Methods in Analysis, Adv. Courses Math. CRM Barcelona
[3]  
Bellenot Steven F., 1989, CONT MATH, V85, P1, DOI [10.1090/conm/085/983378, DOI 10.1090/C0NM/085/983378]
[4]  
Fleming R., 2008, CHAPMAN HALL CRC MON, V2, P138
[5]  
Fleming Richard J., 2003, CRC MONOGRAPHS SURVE, V129
[6]  
Fonf V. P., 1978, FUNKTSIONAL ANAL PRI, V12, P91
[7]  
Gowers W., 2009, MUST EXPLICITLY DEFI
[8]  
Lindenstrauss Joram, 1977, SEQUENCE SPACES ERGE, V92
[9]  
Rolewicz Stefan, 1972, MONOGRAFIE MATEMATYC, V56
[10]  
Rudin W, 1991, Functional analysis