Bifurcations and exceptional points in dipolar Bose-Einstein condensates

被引:33
|
作者
Gutoehrlein, Robin [1 ]
Main, Joerg [1 ]
Cartarius, Holger [1 ]
Wunner, Guenter [1 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 1, D-70550 Stuttgart, Germany
关键词
GAS;
D O I
10.1088/1751-8113/46/30/305001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bose-Einstein condensates are described in a mean-field approach by the nonlinear Gross-Pitaevskii equation and exhibit phenomena of nonlinear dynamics. The stationary states can undergo bifurcations in such a way that two or more eigenvalues and the corresponding wavefunctions coalesce at critical values of external parameters. For example, in condensates without long-range interactions a stable and an unstable state are created in a tangent bifurcation when the scattering length of the contact interaction is varied. At the critical point, the coalescing states show the properties of an exceptional point. In dipolar condensates fingerprints of a pitchfork bifurcation have been discovered by Rau et al (2010 Phys. Rev. A 81 031605). We present a method to uncover all states participating in a pitchfork bifurcation, and investigate in detail the signatures of exceptional points related to bifurcations in dipolar condensates. For the perturbation by two parameters, namely the scattering length and a parameter breaking the cylindrical symmetry of the harmonic trap, two cases leading to different characteristic eigenvalue and eigenvector patterns under cyclic variations of the parameters need to be distinguished. The observed structures resemble those of three coalescing eigenfunctions obtained by Demange and Graefe (2012 J. Phys. A: Math. Theor. 45 025303) using perturbation theory for non-Hermitian operators in a linear model. Furthermore, the splitting of the exceptional point under symmetry breaking in either two or three branching singularities is examined. Characteristic features are observed when one, two or three exceptional points are encircled simultaneously.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Roton entanglement in quenched dipolar Bose-Einstein condensates
    Tian, Zehua
    Cha, Seok-Yeong
    Fischer, Uwe R.
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [32] PARAMETRIC EXCITATION OF SOLITONS IN DIPOLAR BOSE-EINSTEIN CONDENSATES
    Benseghir, A.
    Abdullah, W. A. T. Wan
    Umarov, B. A.
    Baizakov, B. B.
    MODERN PHYSICS LETTERS B, 2013, 27 (25):
  • [33] Rotons and their damping in elongated dipolar Bose-Einstein condensates
    Matveenko, S., I
    Bahovadinov, M. S.
    Baranov, M. A.
    Shlyapnikov, G., V
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [34] Ferromagnetic resonance in spinor dipolar Bose-Einstein condensates
    Yasunaga, Masashi
    Tsubota, Makoto
    PHYSICAL REVIEW A, 2011, 83 (01):
  • [35] Vortex dynamics of rotating dipolar Bose-Einstein condensates
    Kumar, R. Kishor
    Muruganandam, P.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (21)
  • [36] Dipolar Bose-Einstein condensates in weak anisotropic disorder
    Nikolic, Branko
    Balaz, Antun
    Pelster, Axel
    PHYSICAL REVIEW A, 2013, 88 (01)
  • [37] Manifestations of the roton mode in dipolar Bose-Einstein condensates
    Wilson, Ryan M.
    Ronen, Shai
    Bohn, John L.
    Pu, Han
    PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [38] Einstein-de Haas effect in dipolar Bose-Einstein condensates
    Kawaguchi, Y
    Saito, H
    Ueda, M
    PHYSICAL REVIEW LETTERS, 2006, 96 (08)
  • [39] Exceptional Points for Nonlinear Schrodinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases
    Wunner, G.
    Cartarius, H.
    Koeberle, P.
    Main, J.
    Rau, S.
    ACTA POLYTECHNICA, 2011, 51 (04) : 95 - 103
  • [40] Bifurcations, order and chaos in the Bose-Einstein condensation of dipolar gases
    Koeberle, Patrick
    Cartarius, Holger
    Fabcic, Tomaz
    Main, Joerg
    Wunner, Guenter
    NEW JOURNAL OF PHYSICS, 2009, 11