Bifurcations and exceptional points in dipolar Bose-Einstein condensates

被引:33
|
作者
Gutoehrlein, Robin [1 ]
Main, Joerg [1 ]
Cartarius, Holger [1 ]
Wunner, Guenter [1 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 1, D-70550 Stuttgart, Germany
关键词
GAS;
D O I
10.1088/1751-8113/46/30/305001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bose-Einstein condensates are described in a mean-field approach by the nonlinear Gross-Pitaevskii equation and exhibit phenomena of nonlinear dynamics. The stationary states can undergo bifurcations in such a way that two or more eigenvalues and the corresponding wavefunctions coalesce at critical values of external parameters. For example, in condensates without long-range interactions a stable and an unstable state are created in a tangent bifurcation when the scattering length of the contact interaction is varied. At the critical point, the coalescing states show the properties of an exceptional point. In dipolar condensates fingerprints of a pitchfork bifurcation have been discovered by Rau et al (2010 Phys. Rev. A 81 031605). We present a method to uncover all states participating in a pitchfork bifurcation, and investigate in detail the signatures of exceptional points related to bifurcations in dipolar condensates. For the perturbation by two parameters, namely the scattering length and a parameter breaking the cylindrical symmetry of the harmonic trap, two cases leading to different characteristic eigenvalue and eigenvector patterns under cyclic variations of the parameters need to be distinguished. The observed structures resemble those of three coalescing eigenfunctions obtained by Demange and Graefe (2012 J. Phys. A: Math. Theor. 45 025303) using perturbation theory for non-Hermitian operators in a linear model. Furthermore, the splitting of the exceptional point under symmetry breaking in either two or three branching singularities is examined. Characteristic features are observed when one, two or three exceptional points are encircled simultaneously.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Phases of supersolids in confined dipolar Bose-Einstein condensates
    Zhang, Yong-Chang
    Pohl, Thomas
    Maucher, Fabian
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [22] Spin Echo in Spinor Dipolar Bose-Einstein Condensates
    Yasunaga, Masashi
    Tsubota, Makoto
    PHYSICAL REVIEW LETTERS, 2008, 101 (22)
  • [23] Roton confinement in trapped dipolar Bose-Einstein condensates
    Jona-Lasinio, M.
    Lakomy, K.
    Santos, L.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [24] Vortex dynamics and turbulence in dipolar Bose-Einstein condensates
    Sabari, S.
    Kumar, R. Kishor
    Tomio, Lauro
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [25] Dipolar Bose-Einstein condensates with large scattering length
    Young-S, Luis E.
    Adhikari, S. K.
    Muruganandam, P.
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [26] Droplet arrays in doubly dipolar Bose-Einstein condensates
    Ghosh, Ratheejit
    Mishra, Chinmayee
    Santos, Luis
    Nath, Rejish
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [27] Instability of Rotationally Tuned Dipolar Bose-Einstein Condensates
    Prasad, S. B.
    Bland, T.
    Mulkerin, B. C.
    Parker, N. G.
    Martin, A. M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (05)
  • [28] The dynamics of three coupled dipolar Bose-Einstein condensates
    Wu Jian-Hua
    Xu Sheng-Nan
    CHINESE PHYSICS B, 2013, 22 (12)
  • [29] Helical spin textures in dipolar Bose-Einstein condensates
    Huhtamaki, J. A. M.
    Kuopanportti, P.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [30] Scattering length instability in dipolar Bose-Einstein condensates
    Bortolotti, D. C. E.
    Ronen, S.
    Bohn, J. L.
    Blume, D.
    PHYSICAL REVIEW LETTERS, 2006, 97 (16)