Bifurcations and exceptional points in dipolar Bose-Einstein condensates

被引:33
|
作者
Gutoehrlein, Robin [1 ]
Main, Joerg [1 ]
Cartarius, Holger [1 ]
Wunner, Guenter [1 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 1, D-70550 Stuttgart, Germany
关键词
GAS;
D O I
10.1088/1751-8113/46/30/305001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bose-Einstein condensates are described in a mean-field approach by the nonlinear Gross-Pitaevskii equation and exhibit phenomena of nonlinear dynamics. The stationary states can undergo bifurcations in such a way that two or more eigenvalues and the corresponding wavefunctions coalesce at critical values of external parameters. For example, in condensates without long-range interactions a stable and an unstable state are created in a tangent bifurcation when the scattering length of the contact interaction is varied. At the critical point, the coalescing states show the properties of an exceptional point. In dipolar condensates fingerprints of a pitchfork bifurcation have been discovered by Rau et al (2010 Phys. Rev. A 81 031605). We present a method to uncover all states participating in a pitchfork bifurcation, and investigate in detail the signatures of exceptional points related to bifurcations in dipolar condensates. For the perturbation by two parameters, namely the scattering length and a parameter breaking the cylindrical symmetry of the harmonic trap, two cases leading to different characteristic eigenvalue and eigenvector patterns under cyclic variations of the parameters need to be distinguished. The observed structures resemble those of three coalescing eigenfunctions obtained by Demange and Graefe (2012 J. Phys. A: Math. Theor. 45 025303) using perturbation theory for non-Hermitian operators in a linear model. Furthermore, the splitting of the exceptional point under symmetry breaking in either two or three branching singularities is examined. Characteristic features are observed when one, two or three exceptional points are encircled simultaneously.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bifurcations and exceptional points in a PT-symmetric dipolar Bose-Einstein condensate
    Gutoehrlein, Robin
    Cartarius, Holger
    Main, Joerg
    Wunner, Guenter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (48)
  • [2] Verification of exceptional points in the collapse dynamics of Bose-Einstein condensates
    Brinker, Jonas
    Fuchs, Jacob
    Main, Joerg
    Wunner, Guenter
    Cartarius, Holger
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [3] Vortices in dipolar Bose-Einstein condensates
    Bland, Thomas
    Lamporesi, Giacomo
    Mark, Manfred J.
    Ferlaino, Francesca
    COMPTES RENDUS PHYSIQUE, 2023, 24
  • [4] Pitchfork bifurcations in blood-cell-shaped dipolar Bose-Einstein condensates
    Rau, Stefan
    Main, Joerg
    Koeberle, Patrick
    Wunner, Guenter
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [5] Vortex solitons in dipolar Bose-Einstein condensates
    Tikhonenkov, I.
    Malomed, B. A.
    Vardi, A.
    PHYSICAL REVIEW A, 2008, 78 (04):
  • [6] Anisotropic solitons in dipolar Bose-Einstein condensates
    Tikhonenkov, I.
    Malomed, B. A.
    Vardi, A.
    PHYSICAL REVIEW LETTERS, 2008, 100 (09)
  • [7] NEW PHYSICS IN DIPOLAR BOSE-EINSTEIN CONDENSATES
    Kawaguchi, Yuki
    Saito, Hiroki
    Ueda, Masahito
    LASER SPECTROSCOPY, 2010, : 29 - +
  • [8] Angular collapse of dipolar Bose-Einstein condensates
    Wilson, Ryan M.
    Ronen, Shai
    Bohn, John L.
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [9] Quantum filaments in dipolar Bose-Einstein condensates
    Waechtler, F.
    Santos, L.
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [10] Dipolar Bose-Einstein condensates with weak disorder
    Krumnow, Christian
    Pelster, Axel
    PHYSICAL REVIEW A, 2011, 84 (02):