Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets

被引:28
作者
Kwon, Ki Chang [1 ]
Kim, Buem Joon [2 ,3 ]
Lee, Jong-Lam [2 ,3 ]
Kim, Soo Young [1 ]
机构
[1] Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 156756, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, Gyeongbuk, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Div Adv Mat Sci, Pohang 790784, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
CARBON NANOTUBES; LARGE-AREA; FILMS; ELECTRODES; BORON;
D O I
10.1039/c2tc00008c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The degradation mechanism of graphene sheets doped with metal chloride was investigated as a function of the annealing process. The sheet resistance of doped graphene increased from 500-700 Omega sq(-1) to 10 k Omega sq(-1) and the transmittance at 550 nm decreased from 95% to 87-91% after annealing at 400 degrees C. Furthermore, the work function of doped graphene decreased from 4.7-5.1 eV to 4.2-4.5 eV after annealing. The G and 2D band peaks in the Raman spectra were shifted to lower wavenumbers by annealing at 400 degrees C, regardless of the kind of dopant, and reached nearly the same level as that of the pristine graphene. X-ray photoemission spectroscopy showed that the chlorine anions and chlorine atoms disappeared after thermal annealing. The scanning electron microscopy images revealed the capability of annealing to gather the unstable metal cations, thereby inducing the aggregation of metal particles. The degree of doping of the graphene sheets was strongly related to not only metal cations but also chlorine anions. Therefore, aggregation of metal particles and adsorption of chlorine ions degraded the properties of graphene as a function of annealing temperature.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 37 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Controlling work function of reduced graphite oxide with Au-ion concentration [J].
Benayad, Anass ;
Shin, Hyeon-Jin ;
Park, Hyeon Ki ;
Yoon, Seon-Mi ;
Kim, Ki Kang ;
Jin, Mei Hua ;
Jeong, Hae-Kyung ;
Lee, Jae Cheol ;
Choi, Jae-Young ;
Lee, Young Hee .
CHEMICAL PHYSICS LETTERS, 2009, 475 (1-3) :91-95
[3]  
Budavari S., 1996, MERCK INDEX ENCY CHE, V2
[4]   Reduced Graphite Oxide-Indium Tin Oxide Hybrid Materials for use as a Transparent Electrode [J].
Choi, Kyoung Soon ;
Park, Yensil ;
Kwon, Ki-Chang ;
Kim, Jooheon ;
Kim, Chang Keun ;
Kim, Soo Young ;
Hong, Kihyon ;
Lee, Jong-Lam .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) :J231-J235
[5]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[6]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[7]   Carbon Nanotube Doping Mechanism in a Salt Solution and Hygroscopic Effect: Density Functional Theory [J].
Duong, Dinh Loc ;
Lee, Il Ha ;
Kim, Ki Kang ;
Kong, Jing ;
Lee, Seung Mi ;
Lee, Young Hee .
ACS NANO, 2010, 4 (09) :5430-5436
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   Room-temperature ballistic transport in narrow graphene strips [J].
Gunlycke, D. ;
Lawler, H. M. ;
White, C. T. .
PHYSICAL REVIEW B, 2007, 75 (08)