A detailed study on a new (2+1)-dimensional mKdV equation involving the Caputo-Fabrizio time-fractional derivative

被引:0
|
作者
Hosseini, K. [1 ]
Ilie, M. [1 ]
Mirzazadeh, M. [2 ]
Baleanu, D. [3 ,4 ]
机构
[1] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht, Iran
[2] Univ Guilan, Fac Technol & Engn, Dept Engn Sci, Rudsar Vajargah 4489163157, Iran
[3] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey
[4] Inst Space Sci, R-76900 Magurele 76900, Romania
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2020年 / 2020卷 / 01期
关键词
mml:mo stretchy="false"(mml:mo mml:mn2mml:mn mml:mo+mml:mo mml:mn 1mml:mn mml:mo stretchy="false")mml:mo-dimensional mKdV equation; Caputo-Fabrizio time-fractional derivative; Homotopy analysis transform method; Analytic approximation; Fixed-point theorem; Existence and uniqueness of the solution; REACTION-DIFFUSION SYSTEM; KDV EQUATION; KERNEL; CALCULUS;
D O I
10.1186/s13662-020-02789-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present article aims to present a comprehensive study on a nonlinear time-fractional model involving the Caputo-Fabrizio (CF) derivative. More explicitly, a new (2+1)-dimensional mKdV (2D-mKdV) equation involving the Caputo-Fabrizio time-fractional derivative is considered and an analytic approximation for it is retrieved through a systematic technique, called the homotopy analysis transform (HAT) method. Furthermore, after proving the Lipschitz condition for the kernel psi (x,y,t;u), the fixed-point theorem is formally utilized to demonstrate the existence and uniqueness of the solution of the new 2D-mKdV equation involving the CF time-fractional derivative. A detailed study finally is carried out to examine the effect of the Caputo-Fabrizio operator on the dynamics of the obtained analytic approximation.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Solution of time-fractional gas dynamics equation using Elzaki decomposition method with Caputo-Fabrizio fractional derivative (vol 19, e0300436, 2024)
    Sadaf, Maasoomah
    Perveen, Zahida
    Akram, Ghazala
    Habiba, Ume
    Abbas, Muhammad
    Emadifar, Homan
    PLOS ONE, 2025, 20 (03):
  • [42] One-Dimensional Consolidation of Viscoelastic Soils Incorporating Caputo-Fabrizio Fractional Derivative
    Huang, Minghua
    Lv, Chang
    Zhou, Suhua
    Zhou, Shuaikang
    Kang, Jiatao
    APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 17
  • [43] Transient Electro-osmotic Slip Flow of an Oldroyd-B Fluid with Time-fractional Caputo-Fabrizio Derivative
    Shah, Nehad Ali
    Wang, Xiaoping
    Qi, Haitao
    Wang, Shaowei
    Hajizadeh, Ahmad
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2019, 5 (04): : 779 - 790
  • [44] Analytic study of pine wilt disease model with Caputo-Fabrizio fractional derivative
    Massoun, Youssouf
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) : 7072 - 7080
  • [45] Wave equation in fractional Zener-type viscoelastic media involving Caputo-Fabrizio fractional derivatives
    Atanackovic, Teodor M.
    Janev, Marko
    Pilipovic, Stevan
    MECCANICA, 2019, 54 (1-2) : 155 - 167
  • [46] Study of fractional integro-differential equations under Caputo-Fabrizio derivative
    Shah, Kamal
    Gul, Rozi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (13) : 7940 - 7953
  • [47] A detailed study on a new (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2 + 1)$\end{document}-dimensional mKdV equation involving the Caputo–Fabrizio time-fractional derivative
    K. Hosseini
    M. Ilie
    M. Mirzazadeh
    D. Baleanu
    Advances in Difference Equations, 2020 (1)
  • [48] REACHABILITY OF FRACTIONAL CONTINUOUS-TIME LINEAR SYSTEMS USING THE CAPUTO-FABRIZIO DERIVATIVE
    Kaczorek, Tadeusz
    PROCEEDINGS - 30TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2016, 2016, : 53 - 58
  • [49] A binary Caputo–Fabrizio fractional reproducing kernel method for the time-fractional Cattaneo equation
    Xinyue Mu
    Jiabao Yang
    Huanmin Yao
    Journal of Applied Mathematics and Computing, 2023, 69 : 3755 - 3791
  • [50] FRACTIONAL DESCRIPTOR CONTINUOUS-TIME LINEAR SYSTEMS DESCRIBED BY THE CAPUTO-FABRIZIO DERIVATIVE
    Kaczorek, Tadeusz
    Borawski, Kamil
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2016, 26 (03) : 533 - 541