Managing the TME to improve the efficacy of cancer therapy

被引:138
作者
Bilotta, Maria Teresa [1 ]
Antignani, Antonella [1 ]
Fitzgerald, David J. [1 ]
机构
[1] NCI, Ctr Canc Res, Lab Mol Biol, NIH, Bethesda, MD 20892 USA
来源
FRONTIERS IN IMMUNOLOGY | 2022年 / 13卷
基金
美国国家卫生研究院;
关键词
anti-cancer therapy; immunosuppression; immunotherapy combined therapy; TME (tumor microenvironment); Hodgkin (cHL); GBM; glioblastoma multiforme; PDAC; pancreatic ductal adenocarcinoma; MYELOID CELLS; TUMOR; HALLMARKS;
D O I
10.3389/fimmu.2022.954992
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The tumor microenvironment (TME) influences tumor growth, metastatic spread and response to treatment. Often immunosuppression, mediated by the TME, impairs a beneficial response. The complexity of the tumor composition challenges our abilities to design new and more effective therapies. Going forward we will need to 'manage' the content and or functionality of the TME to improve treatment outcomes. Currently, several different kinds of treatments are available to patients with cancer: there are the traditional approaches of chemotherapy, radiation and surgery; there are targeted agents that inhibit kinases associated with oncogenic pathways; there are monoclonal antibodies that target surface antigens often delivering toxic payloads or cells and finally there are antibodies and biologics that seek to overcome the immunosuppression caused by elements within the TME. How each of these therapies interact with the TME is currently under intense and widespread investigation. In this review we describe how the TME and its immunosuppressive components can influence both tumor progression and response to treatment focusing on three particular tumor types, classic Hodgkin Lymphoma (cHL), Pancreatic Ductal Adenocarcinoma (PDAC) and Glioblastoma Multiforme (GBM). And, finally, we offer five approaches to manipulate or manage the TME to improve outcomes for cancer patients.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Single-Cell Transcriptome Analysis Reveals Disease-Defining T-cell Subsets in the Tumor Microenvironment of Classic Hodgkin Lymphoma [J].
Aoki, Tomohiro ;
Chong, Lauren C. ;
Takata, Katsuyoshi ;
Milne, Katy ;
Hav, Monirath ;
Colombo, Anthony ;
Chavez, Elizabeth A. ;
Nissen, Michael ;
Wang, Xuehai ;
Miyata-Takata, Tomoko ;
Lam, Vivian ;
Vigano, Elena ;
Woolcock, Bruce W. ;
Telenius, Adele ;
Li, Michael Y. ;
Healy, Shannon ;
Ghesquiere, Chanel ;
Kos, Daniel ;
Goodyear, Talia ;
Veldman, Johanna ;
Zhang, Allen W. ;
Kim, Jubin ;
Saberi, Saeed ;
Ding, Jiarui ;
Farinha, Pedro ;
Weng, Andrew P. ;
Savage, Kerry J. ;
Scott, David W. ;
Krystal, Gerald ;
Nelson, Brad H. ;
Mottok, Anja ;
Merchant, Akil ;
Shah, Sohrab P. ;
Steidl, Christian .
CANCER DISCOVERY, 2020, 10 (03) :406-421
[2]   Tumor microenvironment complexity and therapeutic implications at a glance [J].
Baghba, Roghayyeh ;
Roshangar, Leila ;
Jahanban-Esfahlan, Rana ;
Seidi, Khaled ;
Ebrahimi-Kalan, Abbas ;
Jaymand, Mehdi ;
Kolahian, Saeed ;
Javaheri, Tahereh ;
Zare, Peyman .
CELL COMMUNICATION AND SIGNALING, 2020, 18 (01)
[3]   Inflammation and cancer: back to Virchow? [J].
Balkwill, F ;
Mantovani, A .
LANCET, 2001, 357 (9255) :539-545
[4]   Therapeutic Targeting of the Tumor Microenvironment [J].
Bejarano, Leire ;
Jordao, Marta J. C. ;
Joyce, Johanna A. .
CANCER DISCOVERY, 2021, 11 (04) :933-959
[5]   Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages [J].
Bellora, Francesca ;
Dondero, Alessandra ;
Corrias, Maria Valeria ;
Casu, Beatrice ;
Regis, Stefano ;
Caliendo, Fabio ;
Moretta, Alessandro ;
Cazzola, Mario ;
Elena, Chiara ;
Vinti, Luciana ;
Locatelli, Franco ;
Bottino, Cristina ;
Castriconi, Roberta .
JOURNAL OF IMMUNOLOGY, 2017, 199 (04) :1516-1525
[6]   Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade [J].
Berry, Sneha ;
Giraldo, Nicolas A. ;
Green, Benjamin F. ;
Cottrell, Tricia R. ;
Stein, Julie E. ;
Engle, Elizabeth L. ;
Xu, Haiying ;
Ogurtsova, Aleksandra ;
Roberts, Charles ;
Wang, Daphne ;
Nguyen, Peter ;
Zhu, Qingfeng ;
Soto-Diaz, Sigfredo ;
Loyola, Jose ;
Sander, Inbal B. ;
Wong, Pok Fai ;
Jessel, Shlomit ;
Doyle, Joshua ;
Signer, Danielle ;
Wilton, Richard ;
Roskes, Jeffrey S. ;
Eminizer, Margaret ;
Park, Seyoun ;
Sunshine, Joel C. ;
Jaffee, Elizabeth M. ;
Baras, Alexander ;
De Marzo, Angelo M. ;
Topalian, Suzanne L. ;
Kluger, Harriet ;
Cope, Leslie ;
Lipson, Evan J. ;
Danilova, Ludmila ;
Anders, Robert A. ;
Rimm, David L. ;
Pardoll, Drew M. ;
Szalay, Alexander S. ;
Taube, Janis M. .
SCIENCE, 2021, 372 (6547) :1166-+
[7]   CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response [J].
Biasci, Daniele ;
Smoragiewicz, Martin ;
Connell, Claire M. ;
Wang, Zhikai ;
Gao, Ya ;
Thaventhiran, James E. D. ;
Basu, Bristi ;
Magiera, Lukasz ;
Johnson, T. Isaac ;
Bax, Lisa ;
Gopinathan, Aarthi ;
Isherwood, Christopher ;
Gallagher, Ferdia A. ;
Pawula, Maria ;
Hudecova, Irena ;
Gale, Davina ;
Rosenfeld, Nitzan ;
Barmpounakis, Petros ;
Popa, Elizabeta Cristina ;
Brais, Rebecca ;
Godfrey, Edmund ;
Mir, Fraz ;
Richards, Frances M. ;
Fearo, Douglas T. ;
Janowitz, Tobias ;
Jodrell, Duncan I. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (46) :28960-28970
[8]   IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma [J].
Biffi, Giulia ;
Oni, Tobiloba E. ;
Spielman, Benjamin ;
Hao, Yuan ;
Elyada, Ela ;
Park, Youngkyu ;
Preall, Jonathan ;
Tuveson, David A. .
CANCER DISCOVERY, 2019, 9 (02) :282-301
[9]  
Bournazou Eirini, 2013, JAKSTAT, V2, pe23828, DOI 10.4161/jkst.23828
[10]   Selective Autophagy Conceals the Enemy: Why Cytotoxic T Cells Don't (MH)C Pancreatic Cancer [J].
Bozic, Mihaela ;
Wilkinson, Simon .
MOLECULAR CELL, 2020, 79 (01) :6-8