Monotonicity and rigidity of solutions to some elliptic systems with uniform limits

被引:15
|
作者
Farina, Alberto [1 ]
Sciunzi, Berardino [2 ]
Soave, Nicola [3 ]
机构
[1] Univ Picardie Jules Verne, CNRS, UMR 7352, LAMFA, 33 Rue St Leu, F-80039 Amiens, France
[2] UNICAL, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Rigidity and symmetry results; elliptic systems; Liouville-type theorems; LAYERED SOLUTIONS; CONJECTURE; EQUATIONS; SYMMETRY; GIORGI;
D O I
10.1142/S0219199719500445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the validity of Gibbons' conjecture for a coupled competing Gross-Pitaevskii system. We also provide sharp a priori bounds, regularity results and additional Liouville-type theorems.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] New Monotonicity Formulae for Semi-linear Elliptic and Parabolic Systems
    Ma, Li
    Song, Xianfa
    Zhao, Lin
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2010, 31 (03) : 411 - 432
  • [42] Holder regularity of the solutions of some classes of elliptic systems in convex nonsmooth domains
    Leonardi, S
    Kottas, J
    Stará, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) : 925 - 944
  • [43] Uniform boundary estimates in homogenization of higher-order elliptic systems
    Niu, Weisheng
    Xu, Yao
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 97 - 128
  • [44] Classification of solutions for some elliptic system
    Yu, Xiaohui
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [45] Existence of weak solutions for a class of quasilinear elliptic systems
    Ou, Zeng-Qi
    Li, Chun
    BOUNDARY VALUE PROBLEMS, 2015,
  • [46] Symmetry results of solutions for elliptic systems with linear couplings
    Li, Keqiang
    Wang, Shangjiu
    Li, Yin
    Li, Shaoyong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 816 - 827
  • [47] New monotonicity formulae for semi-linear elliptic and parabolic systems
    Li Ma
    Xianfa Song
    Lin Zhao
    Chinese Annals of Mathematics, Series B, 2010, 31 : 411 - 432
  • [49] Existence and multiplicity of solutions for a class of elliptic systems in Rn
    Rabelo, Paulo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2585 - 2599
  • [50] A priori bounds and existence of solutions for some nonlocal elliptic problems
    Barrios, Begona
    Del Pezzo, Leandro
    Garcia-Melian, Jorge
    Quaas, Alexander
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 195 - 220