Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences

被引:200
作者
Fuhrman, JA
Davis, AA
机构
[1] Department of Biological Sciences, University of Southern California, Los Angeles
关键词
archea; bacteria; 16S rRNA; deep sea; marine; phylogeny; clone;
D O I
10.3354/meps150275
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Marine microbial diversity is important yet poorly-known, due to low culturability and undersampling. However, 16S rRNA gene sequences cloned directly from biomass allow us to know what microbial types are present, irrespective of culturing, and to create probes suitable for biodiversity studies. Many sequences are needed for good probe design. Here we report on sequences from 57 deep sea clones, obtained by the polymerase chain reaction with 'universal' primers, from 500 m and 3000 m depths in the northeast Pacific and 1000 m depth in the subtropical Atlantic. The most common group, with 19 of the new sequences (10 Atlantic), was a recently reported crenarchaeal cluster, Group I. We also found 6 sequences in 2 other archaeal groups in the broad methanogen-halophile lineage; 2 of these were in a distinct Lineage not previously reported. The bacterial sequences included 22 dispersed among the alpha and gamma Proteobacteria (8 related to SAR 11), 5 related to a previously reported broad group (Group A) of marine clones poorly affiliated with known (cultured and sequenced) major bacterial divisions, 6 in a second group with little affiliation to any previously reported division (we call this Group B), 1 in a third possible major novel group, 2 deeply branched within the 'Green Nonsulfur' lineage, and 1 branching with a soil clone. In contrast to the vast majority of the sequences, a cluster of 5 sequences was very close to a cultured marine proteobacterium, Alteromonas macleodii. It appeared that 5 of the clones were chimeric, although this label is difficult to apply when sequences are only distantly related to those in the database, as was common. We conclude that the deep sea contains numerous novel and widespread major prokaryotic Lineages. Given the huge volume of this habitat and typical bacterial abundances, it appears that the previously unknown archaeal and bacterial groups may be the most abundant organisms on Earth.
引用
收藏
页码:275 / 285
页数:11
相关论文
共 33 条
[1]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[2]   PHYLOGENETIC ANALYSIS OF A NATURAL MARINE BACTERIOPLANKTON POPULATION BY RIBOSOMAL-RNA GENE CLONING AND SEQUENCING [J].
BRITSCHGI, TB ;
GIOVANNONI, SJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (06) :1707-1713
[3]   METHANE PRODUCTION DURING ZOOPLANKTON GRAZING ON MARINE-PHYTOPLANKTON [J].
DEANGELIS, MA ;
LEE, C .
LIMNOLOGY AND OCEANOGRAPHY, 1994, 39 (06) :1298-1308
[4]   ARCHAEA IN COASTAL MARINE ENVIRONMENTS [J].
DELONG, EF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (12) :5685-5689
[5]   HIGH ABUNDANCE OF ARCHAEA IN ANTARCTIC MARINE PICOPLANKTON [J].
DELONG, EF ;
WU, KY ;
PREZELIN, BB ;
JOVINE, RVM .
NATURE, 1994, 371 (6499) :695-697
[6]   PHYLOGENETIC DIVERSITY OF AGGREGATE-ATTACHED VS FREE-LIVING MARINE BACTERIAL ASSEMBLAGES [J].
DELONG, EF ;
FRANKS, DG ;
ALLDREDGE, AL .
LIMNOLOGY AND OCEANOGRAPHY, 1993, 38 (05) :924-934
[7]   EFFECT OF GENOME SIZE AND RRN GENE COPY NUMBER ON PCR AMPLIFICATION OF 16S RIBOSOMAL-RNA GENES FROM A MIXTURE OF BACTERIAL SPECIES [J].
FARRELLY, V ;
RAINEY, FA ;
STACKEBRANDT, E .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (07) :2798-2801
[8]   EVOLUTIONARY TREES FROM DNA-SEQUENCES - A MAXIMUM-LIKELIHOOD APPROACH [J].
FELSENSTEIN, J .
JOURNAL OF MOLECULAR EVOLUTION, 1981, 17 (06) :368-376
[9]  
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
[10]  
FELSENSTEIN J, 1993, PHYLIP 3 5 PHYLOGENY