Isoperimetric type inequalities for differential forms on manifolds

被引:6
作者
Giannetti, F [1 ]
di Napoli, AP [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
wedge product; isoperimetric inequality; Holder continuity;
D O I
10.1512/iumj.2005.54.2665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth oriented Riemannian n-manifold without boundary and (Phi, Psi) is an element of L-p (boolean AND(l) X) x L-r(boolean AND Xn-l), 1/p + 1/r = 1 + 1/n, be a pair of closed differential forms. We prove an isoperimetric type inequality for such differential forms under suitable assumptions. As an application we derive Holder continuity for solutions of Hodge systems.
引用
收藏
页码:1483 / 1497
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 2012, DIFFERENTIAL FORMS
[2]   Isoperimetric inequality for Div-curl fields [J].
Carozza, M ;
Di Napoli, AP .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (03) :405-419
[3]   Estimates of Jacobians by Subdeterminants [J].
Giannetti, Flavia ;
Iwaniec, Tadeusz ;
Onninen, Jani ;
Verde, Anna .
JOURNAL OF GEOMETRIC ANALYSIS, 2002, 12 (02) :223-254
[4]  
HAJLASZ P, 2003, WEAKLY DIFFERENTIABL
[5]   Nonlinear Hodge Theory on Manifolds with Boundary [J].
Iwaniec, T. ;
Scott, C. ;
Stroffolini, B. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1999, 177 (01) :37-115
[6]  
IWANIEC T, 1998, LECT JYVASKYLA, P207
[7]  
Morrey C. B., 1966, GRUNDLEHREN MATH WIS, V130
[8]  
MULLER S, 1990, J REINE ANGEW MATH, V412, P20
[9]  
MULLER S, 1994, ANN I H POINCARE-AN, V11, P217
[10]   THE IMBEDDING PROBLEM FOR RIEMANNIAN MANIFOLDS [J].
NASH, J .
ANNALS OF MATHEMATICS, 1956, 63 (01) :20-63