Robust feedback design for combined therapy of cancer

被引:15
作者
Alamir, Mazen [1 ]
机构
[1] Univ Grenoble, CNRS, Gipsa Lab, Control Syst Dept, F-38402 St Martin Dheres, France
关键词
combined therapy of cancer; nonlinear robust control; Hamilton-Jacobi-Isaacs PDE's; parameters uncertainty; guaranteed tumor contraction;
D O I
10.1002/oca.2057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a mathematical model for the scheduling of angiogenic inhibitors with a killing agent is used to derive a robust state feedback control for the combined therapy of cancer. Robustness is considered against parameter uncertainties through the solution of the associated Hamilton-Jacobi-Isaacs (HJI) partial differential equation. Unlike open-loop optimal control paradigm, solving the HJI equation provides a guaranteed-cost feedback control and a whole visibility of the achievable performance for any possible initial state within the region of interest and for any predefined level of parameter uncertainties. Numerical investigation is proposed using an existing model that has been partially validated using human data. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 10 条
[1]   Robust constrained control algorithm for general batch processes [J].
Alamir, M ;
Balloul, I .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (14) :1271-1287
[2]   Solutions of nonlinear optimal and robust control problems via a mixed collocation/DAE's based algorithm [J].
Alamir, M .
AUTOMATICA, 2001, 37 (07) :1109-1115
[3]  
[Anonymous], J THEOERETICAL MED
[4]  
[Anonymous], J THEOERETICAL BIOL
[5]  
[Anonymous], 1997, Bioscene
[6]  
Basar T, 1998, Dynamic Noncooperative Game Theory
[7]   Mixed immunotherapy and chemotherapy of tumors: Feedback design and model updating schemes [J].
Chareyron, S. ;
Alamir, M. .
JOURNAL OF THEORETICAL BIOLOGY, 2009, 258 (03) :444-454
[8]  
Hahnfeldt P, 1999, CANCER RES, V59, P4770
[9]   Optimal Control for Combination Therapy in Cancer [J].
Ledzewicz, Urszula ;
Schaettler, Heinz ;
d'Onofrio, Alberto .
47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, :1537-1542
[10]  
SWAN GW, 1988, IMA J MATH APPL MED, V5, P303