Dynamic Parrondo's paradox

被引:37
作者
Canovas, J. S.
Linero, A.
Peralta-Salas, D.
机构
[1] Univ Complutense Madrid, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
[3] Univ Murcia, Dept Matemat, Murcia 30100, Spain
关键词
chaos; one-dimensional dynamics; composition of maps; turbulence; Parrondo's paradox;
D O I
10.1016/j.physd.2006.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is focused on studying Parrondo's paradox in non-linear dynamics, specifically how the periodic combination of the individual maps f and g can give rise to chaos or order. We construct dynamical systems exhibiting the paradox for several notions of chaos derived from topological dynamics. The effect of altering the order of the combination, i.e. considering f circle g or g circle f, is analyzed, as well as the robustness of the Parrondo effect under small perturbations. Conditions for avoiding Parrondian dynamics are also obtained, placing special emphasis on the notion of chaos given by turbulence. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 37 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]   Control systems with stochastic feedback [J].
Allison, A ;
Abbott, D .
CHAOS, 2001, 11 (03) :715-724
[3]   Can two chaotic systems give rise to order? [J].
Almeida, J ;
Peralta-Salas, D ;
Romera, M .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 200 (1-2) :124-132
[4]  
Alseda L., 1993, Combinatorial Dynamics and Entropy in Dimension One
[5]   Brownian motors [J].
Astumian, RD ;
Hänggi, P .
PHYSICS TODAY, 2002, 55 (11) :33-39
[6]   Topological entropy of Devaney chaotic maps [J].
Balibrea, F ;
Snoha, L .
TOPOLOGY AND ITS APPLICATIONS, 2003, 133 (03) :225-239
[7]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[8]  
BLOCK LS, 1992, LECT NOTES MATH, V1513, pUR3
[9]   Randomly chosen chaotic maps can give rise to nearly ordered behavior [J].
Boyarsky, A ;
Góra, P ;
Islam, MS .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 210 (3-4) :284-294
[10]  
Boyarsky A., 1997, LAWS CHAOS