A Short Derivation for Turan Numbers of Paths

被引:1
作者
Chang, Gerard Jennhwa [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Natl Ctr Theoret Sci, Math Div, Second Floor,Astron Math Bldg, Taipei 10617, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 01期
关键词
Turan number; extremal graph; path;
D O I
10.11650/tjm/8101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives a short derivation for a result by Faudree and Schelp that the Turan number ex(n; P-k+1) of a path of k +1 vertices is equal to q((k)(2)) + ((r)(2)), where n = qk + r and 0 <= r < k, with the set EX(n;P-k+i) of extremal graphs determined.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 5 条
[1]  
Bollobas B., 2004, EXTREMAL GRAPH THEOR
[2]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[3]  
Erds P., 1966, STUD SCI MATH HUNG, V1, P51
[4]   PATH RAMSEY NUMBERS IN MULTICOLORINGS [J].
FAUDREE, RJ ;
SCHELP, RH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (02) :150-160
[5]  
Gallai T., 1959, Acta Math. Acad. Sci. Hungar., V10, P337, DOI [10.1007/BF02024498, DOI 10.1007/BF02024498]