The equality I2 = qI in sequentially Cohen-Macaulay rings

被引:4
作者
Cuong, Nguyen Tu [1 ]
Goto, Shiro [2 ]
Le Truong, Hoang [1 ]
机构
[1] Inst Math, Hanoi 10307, Vietnam
[2] Meiji Univ, Sch Sci & Technol, Dept Math, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
基金
日本学术振兴会;
关键词
Dimension filtration; Good parameter ideal; Sequentially Cohen-Macaulay ring; Rees algebra; Associated graded ring; PARAMETER IDEALS; BUCHSBAUMNESS;
D O I
10.1016/j.jalgebra.2012.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a sequentially Cohen-Macaulay local ring and assume that dim R 2 or that dim R = 1 and e(R) > 1. Then the equality I-2 = qI holds true for every good parameter ideal q of R contained in a sufficiently high power of the maximal ideal m, where I = q :(R) m. The structure of the graded rings gr(I) = circle plus(n >= 0) I-n/I-n+1,I- R(I) = circle plus(n >= 0) I-n, and R'(I) = circle plus(n is an element of Z) I-n associated to I is explored n in connection to their sequential Cohen-Macaulayness. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 79
页数:30
相关论文
共 22 条
[1]   On the integral closure of ideals [J].
Corso, A ;
Huneke, C ;
Vasconcelos, WV .
MANUSCRIPTA MATHEMATICA, 1998, 95 (03) :331-347
[2]   LINKS OF PRIME IDEALS AND THEIR REES-ALGEBRAS [J].
CORSO, A ;
POLINI, C .
JOURNAL OF ALGEBRA, 1995, 178 (01) :224-238
[3]   On sequentially Cohen-Macaulay modules [J].
Cuong, Nguyen Tu ;
Cuong, Doan Trung .
KODAI MATHEMATICAL JOURNAL, 2007, 30 (03) :409-428
[4]   Cohen-Macaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals [J].
Ghezzi, L. ;
Goto, S. ;
Hong, J. ;
Ozeki, K. ;
Phuong, T. T. ;
Vasconcelos, W. V. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 :679-695
[5]  
Goto S, 2006, LECT NOTES PURE APPL, V244, P115
[6]   INTEGRAL CLOSEDNESS OF COMPLETE-INTERSECTION IDEALS [J].
GOTO, S .
JOURNAL OF ALGEBRA, 1987, 108 (01) :151-160
[7]   The reduction exponent of socle ideals associated to parameter ideals in a Buchsbaum local ring of multiplicity two [J].
Goto, S ;
Sakurai, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (04) :1157-1168
[8]  
Goto S, 2003, REND SEMIN MAT U PAD, V110, P25
[9]   Buchsbaumness in Rees algebras associated to ideals of minimal multiplicity [J].
Goto, S .
JOURNAL OF ALGEBRA, 1999, 213 (02) :604-661
[10]  
GOTO S, 1978, J MATH SOC JPN, V30, P180