Efficient classical simulation of continuous variable quantum information processes

被引:299
作者
Bartlett, SD [1 ]
Sanders, BC
Braunstein, SL
Nemoto, K
机构
[1] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
[2] Macquarie Univ, Ctr Adv Comp Algorithms & Cryptog, Sydney, NSW 2109, Australia
[3] Bangor Univ, Bangor LL57 1UT, Gwynedd, Wales
关键词
D O I
10.1103/PhysRevLett.88.097904
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer.
引用
收藏
页码:4 / 979044
页数:4
相关论文
共 19 条
  • [1] BARTLETT SD, IN PRESS PHYS REV A
  • [2] Error correction for continuous quantum variables
    Braunstein, SL
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4084 - 4087
  • [3] Quantum error correction for communication with linear optics
    Braunstein, SL
    [J]. NATURE, 1998, 394 (6688) : 47 - 49
  • [4] Teleportation of continuous quantum variables
    Braunstein, SL
    Kimble, HJ
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (04) : 869 - 872
  • [5] QUANTUM-MECHANICAL COMPUTERS
    FEYNMAN, RP
    [J]. FOUNDATIONS OF PHYSICS, 1986, 16 (06) : 507 - 531
  • [6] Unconditional quantum teleportation
    Furusawa, A
    Sorensen, JL
    Braunstein, SL
    Fuchs, CA
    Kimble, HJ
    Polzik, ES
    [J]. SCIENCE, 1998, 282 (5389) : 706 - 709
  • [7] Gottesman D, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.022309
  • [8] Encoding a qubit in an oscillator
    Gottesman, D
    Kitaev, A
    Preskill, J
    [J]. PHYSICAL REVIEW A, 2001, 64 (01): : 123101 - 1231021
  • [9] Gottesman D, 1998, GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, P32
  • [10] Quantum cryptography with squeezed states
    Hillery, M
    [J]. PHYSICAL REVIEW A, 2000, 61 (02): : 8