The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion

被引:145
|
作者
Deng, Pu [1 ]
Karadge, Mallikarjun [2 ]
Rebak, Raul B. [2 ]
Gupta, Vipul K. [2 ]
Prorok, Barton C. [1 ]
Lou, Xiaoyuan [1 ]
机构
[1] Auburn Univ, Auburn, AL 36849 USA
[2] GE Res, Niskayuna, NY 12309 USA
关键词
Austenitic stainless steel; Additive manufacturing; Laser powder bed fusion; Oxide inclusions; Powder spattering; Moisture contamination; Melt pool oxidation; Hardness; GAMMA-TIAL ALLOY; OXIDE INCLUSIONS; CREEP-PROPERTIES; FERRITIC STEEL; SPATTER; MICROSTRUCTURE; EVOLUTION; BEHAVIOR; SOLIDIFICATION; PRECIPITATION;
D O I
10.1016/j.addma.2020.101334
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The origins of nano-scale oxide inclusions in 316L austenitic stainless steel (SS) manufactured by laser powder bed fusion (L-PBF) was investigated by quantifying the possible intrusion pathways of oxygen contained in the precursor powder, extraneous oxygen from the process environment during laser processing, and moisture contamination during powder handling and storage. When processing the fresh, as-received powder in a well-controlled environment, the oxide inclusions contained in the precursor powder were the primary contributors to the formation of nano-scale oxides in the final additive manufactured (AM) product. These oxide inclusions were found to be enriched with oxygen getter elements like Si and Mn. By controlling the extraneous oxygen level in the process environment, the oxygen level in AM produced parts was found to increase with the extraneous oxygen level. The intrusion pathway of this extra oxygen was found to be dominated by the incorporation of spatter particles into the build during processing. Moisture induced oxidation during powder storage was also found to result in a higher oxide density in the AM produced parts. SS 316L powder free of Si and Mn oxygen getters was processed in a well-controlled environment and resulted in a similar level of oxygen intrusion. Microhardness testing indicated that the oxide volume fraction increase from extraneous oxygen did not influence hardness values. However, a marked decrease in hardness was found for the humidified and Si-Mn free AM processed parts.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel
    Chenfan Yu
    Peng Zhang
    Zhefeng Zhang
    Wei Liu
    JournalofMaterialsScience&Technology, 2020, 46 (11) : 191 - 200
  • [22] Heat treatment effect on microstructure evolution of two Si steels manufactured by laser powder bed fusion
    Di Schino, Andrea
    Montanari, Roberto
    Sgambetterra, Mirko
    Stornelli, Giulia
    Varone, Alessandra
    Zucca, Guido
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 26 : 8406 - 8424
  • [23] Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel
    Yu, Chenfan
    Zhang, Peng
    Zhang, Zhefeng
    Liu, Wei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 46 : 191 - 200
  • [24] Characterization of single crystalline austenitic stainless steel thin struts processed by laser powder bed fusion
    Wang, X.
    Muniz-Lerma, J. A.
    Sanchez-Mata, O.
    Shandiz, M. Attarian
    Brodusch, N.
    Gauvin, R.
    Brochu, M.
    SCRIPTA MATERIALIA, 2019, 163 : 51 - 56
  • [25] On the process of designing material qualification type specimens manufactured using laser powder bed fusion
    Tekerek, Emine
    Perumal, Vignesh
    Jacquemetton, Lars
    Beckett, Darren
    Halliday, H. Scott
    Wisner, Brian
    Kontsos, Antonios
    MATERIALS & DESIGN, 2023, 229
  • [26] Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review
    Zhou, Yiqi
    Kong, Decheng
    Li, Ruixue
    He, Xing
    Dong, Chaofang
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2024, 37 (04) : 587 - 606
  • [27] Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review
    Yiqi Zhou
    Decheng Kong
    Ruixue Li
    Xing He
    Chaofang Dong
    Acta Metallurgica Sinica (English Letters), 2024, 37 : 587 - 606
  • [28] Detection and effects of lack of fusion defects in Hastelloy X manufactured by laser powder bed fusion
    Palm, M. S.
    Diepold, B.
    Neumeier, S.
    Hoeppel, H. W.
    Goeken, M.
    Zaeh, M. F.
    MATERIALS & DESIGN, 2023, 230
  • [29] Multi-scale characterisation of microstructure and texture of 316L stainless steel manufactured by laser powder bed fusion
    Moyle, Maxwell
    Ledermueller, Carina
    Zou, Zheren
    Primig, Sophie
    Haghdadi, Nima
    MATERIALS CHARACTERIZATION, 2022, 184
  • [30] Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review
    Zai, Le
    Zhang, Chaoqun
    Wang, Yiqiang
    Guo, Wei
    Wellmann, Daniel
    Tong, Xin
    Tian, Yingtao
    METALS, 2020, 10 (02)