Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays

被引:446
作者
Engel, Michael [1 ]
Small, Joshua P. [1 ]
Steiner, Mathias [1 ]
Freitag, Marcus [1 ]
Green, Alexander A. [2 ,3 ]
Hersam, Mark C. [2 ,3 ]
Avouris, Phaedon [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
thin film; self-assembly; carbon nanotube; alignment; field-effect transistor; opto-electronic;
D O I
10.1021/nn800708w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thin film transistors (TFTs) are now poised to revolutionize the display, sensor, and flexible electronics markets. However, there is a limited choice of channel materials compatible with low-temperature processing. This has inhibited the fabrication of high electrical performance TFTs. Single-walled carbon nanotubes (CNTs) have very high mobilities and can be solution-processed, making thin film CNT-based TFTs a natural direction for exploration. The two main challenges facing CNT-TFTs are the difficulty of placing and aligning CNTs over large areas and low on/off current ratios due to admixture of metallic nanotubes. Here, we report the self-assembly and self-alignment of CNTs from solution into micron-wide strips that form regular arrays of dense and highly aligned CNT films covering the entire chip, which is ideally suitable for device fabrication. The films are formed from pre-separated, 99% purely semiconducting CNTs and, as a result, the CNT-TFTs exhibit simultaneously high drive currents and large on/off current ratios. Moreover, they deliver strong photocurrents and are also both photo- and electroluminescent.
引用
收藏
页码:2445 / 2452
页数:8
相关论文
共 41 条
[1]   STRIPE PATTERNS FORMED ON A GLASS-SURFACE DURING DROPLET EVAPORATION [J].
ADACHI, E ;
DIMITROV, AS ;
NAGAYAMA, K .
LANGMUIR, 1995, 11 (04) :1057-1060
[2]   Electroluminescence from single-wall carbon nanotube network transistors [J].
Adam, E. ;
Aguirre, C. M. ;
Marty, L. ;
St-Antoine, B. C. ;
Meunier, F. ;
Desjardins, P. ;
Menard, D. ;
Martel, R. .
NANO LETTERS, 2008, 8 (08) :2351-2355
[3]   Theory of nanocomposite network transistors for macroelectronics applications [J].
Alam, M. A. ;
Pimparkar, N. ;
Kumar, S. ;
Murthy, J. .
MRS BULLETIN, 2006, 31 (06) :466-470
[4]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[5]   Transparent and flexible carbon nanotube transistors [J].
Artukovic, E ;
Kaempgen, M ;
Hecht, DS ;
Roth, S ;
GrUner, G .
NANO LETTERS, 2005, 5 (04) :757-760
[6]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[7]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[8]   Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films [J].
Behnam, Ashkan ;
Ural, Ant .
PHYSICAL REVIEW B, 2007, 75 (12)
[9]   Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J].
Cao, Qing ;
Kim, Hoon-sik ;
Pimparkar, Ninad ;
Kulkarni, Jaydeep P. ;
Wang, Congjun ;
Shim, Moonsub ;
Roy, Kaushik ;
Alam, Muhammad A. ;
Rogers, John A. .
NATURE, 2008, 454 (7203) :495-U4
[10]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709