On combinatorial formulas for Macdonald polynomials

被引:9
作者
Lenart, Cristian [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
Macdonald polynomials; Alcove walks; Ram-Yip formula; Haglund-Haiman-Loehr formula; CRYSTALS; MODEL;
D O I
10.1016/j.aim.2008.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of so-called alcove walks; these originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. In this paper, we relate the above developments, by explaining how the Ram-Yip formula compresses to a new formula, which is similar to the Haglund-Haiman-Loehr one but contains considerably fewer terms. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 340
页数:17
相关论文
共 15 条
[11]  
Macdonald I. G., 1992, Publ. Inst. Rech. Math. Av., V498, P5, DOI DOI 10.1108/EUM0000000002757
[12]  
Macdonald I.G., 2000, Sem. Lothar. Combin., V45
[13]  
RAM A, ARXIVMATH08031146
[14]  
Ram A, 2006, PURE APPL MATH Q, V2, P963
[15]  
Schwer C, 2006, INT MATH RES NOTICES, V2006