On combinatorial formulas for Macdonald polynomials

被引:9
作者
Lenart, Cristian [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
Macdonald polynomials; Alcove walks; Ram-Yip formula; Haglund-Haiman-Loehr formula; CRYSTALS; MODEL;
D O I
10.1016/j.aim.2008.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of so-called alcove walks; these originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. In this paper, we relate the above developments, by explaining how the Ram-Yip formula compresses to a new formula, which is similar to the Haglund-Haiman-Loehr one but contains considerably fewer terms. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 340
页数:17
相关论文
共 15 条
[1]  
[Anonymous], 1990, CAMBRIDGE STUD ADV M
[2]  
ASSAF S, 2007, SCHUR EXPANSION MACD
[3]   LS galleries, the path model, and MV cycles [J].
Gaussent, S ;
Littelmann, P .
DUKE MATHEMATICAL JOURNAL, 2005, 127 (01) :35-88
[4]  
GROJNOWSKI I, 2007, A HECKE ALGEBRAS POS
[5]   A combinatorial formula for Macdonald polynomials [J].
Haglund, J ;
Haiman, M ;
Loehr, N .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :735-761
[6]  
LENART C, ARXIVMATH08044715
[7]   A combinatorial model for crystals of Kac-Moody algebras [J].
Lenart, Cristian ;
Postnikov, Alexander .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (08) :4349-4381
[8]   Affine Weyl Groups in K-Theory and Representation Theory [J].
Lenart, Cristian ;
Postnikov, Alexander .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[9]   A LITTLEWOOD-RICHARDSON RULE FOR SYMMETRIZABLE KAC-MOODY ALGEBRAS [J].
LITTELMANN, P .
INVENTIONES MATHEMATICAE, 1994, 116 (1-3) :329-346
[10]   PATHS AND ROOT OPERATORS IN REPRESENTATION-THEORY [J].
LITTELMANN, P .
ANNALS OF MATHEMATICS, 1995, 142 (03) :499-525