Lieb-Thirring estimates for non-self-adjoint Schrodinger operators

被引:21
作者
Bruneau, Vincent [1 ]
Ouhabaz, El Maati [1 ]
机构
[1] Univ Bordeaux 1, CNRS, Inst Math Bordeaux, UMR 5251, F-33405 Talence, France
关键词
D O I
10.1063/1.2969028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For general nonsymmetric operators A, we prove that the moment of order gamma >= 1 of negative real parts of its eigenvalues is bounded by the moment of order gamma of negative eigenvalues of its symmetric part H=1/2[A+A*]. As an application, we obtain Lieb-Thirring estimates for non-self-adjoint Schrodinger operators. In particular, we recover recent results by Frank et al. [Lett. Math. Phys. 77, 309 (2006)]. We also discuss moment of resonances of Schrodinger self-adjoint operators. (C) 2008 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 24 条
[1]   Bounds on complex eigenvalues and resonances [J].
Abramov, AA ;
Aslanyan, A ;
Davies, EB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (01) :57-72
[2]   SEMICLASSICAL BOUNDS FOR EIGENVALUES OF SCHRODINGER OPERATORS [J].
AIZENMAN, M ;
LIEB, EH .
PHYSICS LETTERS A, 1978, 66 (06) :427-429
[3]  
[Anonymous], SPRINGER LECT NOTES
[4]  
BHATIA R, 1996, GRADUATE TEXTS MATH, V169
[5]   Resonances and spectral shift function near the Landau levels [J].
Bony, Jean-Francois ;
Bruneau, Vincent ;
Raikov, Georgi .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (02) :629-671
[6]   Local energy decay of the wave equation for the exterior problem and absence of resonance in the neighborhood of the real axis [J].
Burq, N .
ACTA MATHEMATICA, 1998, 180 (01) :1-29
[7]  
CYCON H. L, 1987, Schrodinger operators with application to quantum mechanics and global geometry
[8]   Schrodinger operators with slowly decaying potentials [J].
Davies, EB ;
Nath, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) :1-28
[9]   Non-self-adjoint differential operators [J].
Davies, EB .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 :513-532
[10]  
DOLBEAULT J, 2007, LIEB THIRRING INEQUA