Effect of viscosity and shear flow on the nonlinear two fluid interfacial structures

被引:7
作者
Banerjee, Rahul [1 ,2 ,3 ]
Mandal, Labakanta [1 ,2 ]
Khan, M. [1 ,2 ]
Gupta, M. R. [1 ,2 ]
机构
[1] Jadavpur Univ, Dept Instrumentat Sci, Kolkata 700032, India
[2] Jadavpur Univ, Ctr Plasma Studies, Kolkata 700032, India
[3] St Pauls Cathedral Mission Coll, Kolkata 700009, India
关键词
KELVIN-HELMHOLTZ INSTABILITY; RAYLEIGH-TAYLOR; ASTROPHYSICS;
D O I
10.1063/1.4769728
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A nonlinear formulation is presented to deal with the combined action of Rayleigh-Taylor and Kelvin-Helmholtz instabilities as well as combined Ricthmyer-Meshkov and Kelvin-Helmholtz instabilities at the two fluid interface under the influence of viscosity and consequent shear flow. Using Layzer's model, the development of the interfacial structures like bubbles is investigated analytically and numerically. It is found that the growth and normal velocity of the structures are dependent on the relative velocity shear and the kinematic coefficient of viscosity of both the fluids. Both the bubble growth and growth rate are reduced significantly for fluids of higher viscosity coefficient with small velocity shear difference. It is also observed that, for viscous fluids, the transverse velocity of the perturbed interface becomes slower under certain conditions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769728]
引用
收藏
页数:6
相关论文
共 25 条
[1]   Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth [J].
Banerjee, Rahul ;
Mandal, Labakanta ;
Roy, S. ;
Khan, M. ;
Gupta, M. R. .
PHYSICS OF PLASMAS, 2011, 18 (02)
[2]   Very-high-growth-factor planar ablative Rayleigh-Taylor experiments [J].
Bradley, D. K. ;
Braun, D. G. ;
Glendinning, S. G. ;
Edwards, M. J. ;
Milovich, J. L. ;
Sorce, C. M. ;
Collins, G. W. ;
Haan, S. W. ;
Page, R. H. ;
Wallace, R. J. ;
Kaae, J. L. .
PHYSICS OF PLASMAS, 2007, 14 (05)
[3]   Experimental comparison of classical versus ablative Rayleigh-Taylor instability [J].
Budil, KS ;
Remington, BA ;
Peyser, TA ;
Mikaelian, KO ;
Miller, PL ;
Woolsey, NC ;
WoodVasey, WM ;
Rubenchik, AM .
PHYSICAL REVIEW LETTERS, 1996, 76 (24) :4536-4539
[4]   Accurate methods for computing inviscid and viscous Kelvin-Helmholtz instability [J].
Chen, Michael J. ;
Forbes, Lawrence K. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) :1499-1515
[5]   Hydrodynamic instabilities in astrophysics and in laboratory high-energy-density systems [J].
Drake, RP .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B419-B440
[6]   Viscous potential flow analysis of Kelvin-Helmholtz instability in a channel [J].
Funada, T ;
Joseph, DD .
JOURNAL OF FLUID MECHANICS, 2001, 445 :263-283
[7]   Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers [J].
Goncharov, VN .
PHYSICAL REVIEW LETTERS, 2002, 88 (13) :4-134502
[8]   Effect of magnetic field on temporal development of Rayleigh-Taylor instability induced interfacial nonlinear structure [J].
Gupta, M. R. ;
Mandal, Labakanta ;
Roy, Sourav ;
Khan, Manoranjan .
PHYSICS OF PLASMAS, 2010, 17 (01)
[9]   Effect of compressibility on the Rayleigh-Taylor and Richtmyer-Meshkov instability induced nonlinear structure at two fluid interface [J].
Gupta, M. R. ;
Roy, Sourav ;
Khan, Manoranjan ;
Pant, H. C. ;
Sarkar, Susmita ;
Srivastava, M. K. .
PHYSICS OF PLASMAS, 2009, 16 (03)
[10]   Observation of a Kelvin-Helmholtz Instability in a High-Energy-Density Plasma on the Omega Laser [J].
Harding, E. C. ;
Hansen, J. F. ;
Hurricane, O. A. ;
Drake, R. P. ;
Robey, H. F. ;
Kuranz, C. C. ;
Remington, B. A. ;
Bono, M. J. ;
Grosskopf, M. J. ;
Gillespie, R. S. .
PHYSICAL REVIEW LETTERS, 2009, 103 (04)