Four-Dimensional Gradient Shrinking Solitons with Positive Isotropic Curvature

被引:16
作者
Li, Xiaolong [1 ]
Ni, Lei [1 ]
Wang, Kui [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
MANIFOLDS; CLASSIFICATION;
D O I
10.1093/imrn/rnw269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a four-dimensional complete gradient shrinking Ricci soliton with positive isotropic curvature is either a quotient of S-4 or a quotient of S-3 x R. This gives a clean classification result removing the earlier additional assumptions in [14] by Wallach and the second author. The proof also gives a classification result on gradient shrinking Ricci solitons with non-negative isotropic curvature.
引用
收藏
页码:949 / 959
页数:11
相关论文
共 15 条
[1]  
[Anonymous], ARXIVMATHDG0303109
[2]  
Brendle S, 2009, J AM MATH SOC, V22, P287
[3]   Classification of manifolds with weakly 1/4-pinched curvatures [J].
Brendle, Simon ;
Schoen, Richard M. .
ACTA MATHEMATICA, 2008, 200 (01) :1-13
[4]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[5]  
HAMILTON R. S., 1997, Comm. Anal. Geom., V5, P1, DOI 10.4310/CAG.1997.v5.n1.a1
[6]  
HAMILTON RS, 1993, SURVEYS DIFFERENTIAL, V38, P1
[7]  
Kotschwar B, 2015, J DIFFER GEOM, V100, P55
[8]   MINIMAL 2-SPHERES AND THE TOPOLOGY OF MANIFOLDS WITH POSITIVE CURVATURE ON TOTALLY ISOTROPIC 2-PLANES [J].
MICALLEF, MJ ;
MOORE, JD .
ANNALS OF MATHEMATICS, 1988, 127 (01) :199-227
[9]  
MUNTEANU O, J DIFFERENT IN PRESS
[10]   Geometry of shrinking Ricci solitons [J].
Munteanu, Ovidiu ;
Wang, Jiaping .
COMPOSITIO MATHEMATICA, 2015, 151 (12) :2273-2300