Markov Chain Monte Carlo versus Importance Sampling in Bayesian Inference of the GARCH model

被引:5
|
作者
Takaishi, Tetsuya [1 ]
机构
[1] Hiroshima Univ Econ, Asaminami Ku, Hiroshima 7310192, Japan
来源
17TH INTERNATIONAL CONFERENCE IN KNOWLEDGE BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS - KES2013 | 2013年 / 22卷
关键词
GARCH model; Markov Chain Monte Carlo; Importance Sampling; Bayesian Inference;
D O I
10.1016/j.procs.2013.09.191
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Usually, the Bayesian inference of the GARCH model is preferably performed by the Markov Chain Monte Carlo (MCMC) method. In this study, we also take an alternative approach to the Bayesian inference by the importance sampling. Using a multivariate Student's t-distribution that approximates the posterior density of the Bayesian inference, we compare the performance of the MCMC and importance sampling methods. The overall performance can be measured in terms of statistical errors obtained for the same size of Monte Carlo data. The Bayesian inference of the GARCH model is performed by the MCMC method implemented by the Metropolis-Hastings algorithm and the importance sampling method for artificial return data and stock return data. We find that the statistical errors of the GARCH parameters from the importance sampling are smaller than or comparable to those obtained from the MCMC method. Therefore we conclude that the importance sampling method can also be applied effectively for the Bayesian inference of the GARCH model as an alternative method to the MCMC method. (C) 2013 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1056 / 1064
页数:9
相关论文
共 50 条
  • [1] ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING: A NEW MARKOV CHAIN MONTE CARLO SCHEME FOR BAYESIAN INFERENCE
    Beck, James L.
    Zuev, Konstantin M.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2013, 3 (05) : 445 - 474
  • [2] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [3] Bayesian inference and Markov chain Monte Carlo in imaging
    Higdon, DM
    Bowsher, JE
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 2 - 11
  • [4] An Adaptive Markov Chain Monte Carlo Method for GARCH Model
    Takaishi, Tetsuya
    COMPLEX SCIENCES, PT 2, 2009, 5 : 1424 - 1434
  • [5] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Jasper A. Vrugt
    Cees G. H. Diks
    Martyn P. Clark
    Environmental Fluid Mechanics, 2008, 8 : 579 - 595
  • [6] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Vrugt, Jasper A.
    Diks, Cees G. H.
    Clark, Martyn P.
    ENVIRONMENTAL FLUID MECHANICS, 2008, 8 (5-6) : 579 - 595
  • [7] Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach
    Parpas, Panos
    Ustun, Berk
    Webster, Mort
    Quang Kha Tran
    INFORMS JOURNAL ON COMPUTING, 2015, 27 (02) : 358 - 377
  • [8] Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations
    Chaspari, Theodora
    Tsiartas, Andreas
    Tsilifis, Panagiotis
    Narayanan, Shrikanth S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (12) : 3077 - 3092
  • [9] Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference
    Ko, Younhee
    Kim, Jaebum
    Rodriguez-Zas, Sandra L.
    GENES & GENOMICS, 2019, 41 (05) : 547 - 555
  • [10] Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference
    Younhee Ko
    Jaebum Kim
    Sandra L. Rodriguez-Zas
    Genes & Genomics, 2019, 41 : 547 - 555