A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients

被引:6
作者
Chen, Yanping [1 ]
Huang, Yunqing [2 ,3 ]
Liu, Wenbin [4 ,5 ]
Yan, Ningning [6 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[4] Univ Kent, KBS, Canterbury CT2 7NF, Kent, England
[5] Univ Kent, IMS, Canterbury CT2 7NF, Kent, England
[6] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
基金
美国国家科学基金会;
关键词
Multiscale control problem; Mixed finite element; Homogenization; A prior error estimates; ELLIPTIC PROBLEMS; APPROXIMATION; SUPERCONVERGENCE; CONVERGENCE;
D O I
10.1016/j.camwa.2015.03.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study numerical approximation of convex optimal control problems governed by elliptic partial differential equations with oscillating coefficients. Since the objective functional contains flux, we approximate the problems using the mixed finite element methods. We first analyze the standard mixed finite element approximation schemes. Then, motivated by the numerical simulation of the primal variable and the flux in highly heterogeneous porous media, we use a multiscale mixed finite element method to solve the state equations. The multiscale finite element bases are constructed by locally solving Neumann boundary value problems. The analysis of the approximate control problems is carried out under the assumption that the oscillating coefficients are locally periodic, which allows us to use homogenization theory to obtain the asymptotic structure of the solutions, although the numerical schemes are designed for the general case. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:297 / 313
页数:17
相关论文
共 29 条
[1]   A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints [J].
Benedix, Olaf ;
Vexler, Boris .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 44 (01) :3-25
[2]  
Brezzi F., 1991, MIXED HYBRID FINITE
[3]   Superconvergence of mixed finite element methods for optimal control problems [J].
Chen, Yanping .
MATHEMATICS OF COMPUTATION, 2008, 77 (263) :1269-1291
[4]  
Chen YP, 2006, INT J NUMER ANAL MOD, V3, P311
[5]   Numerical Methods for Constrained Elliptic Optimal Control Problems with Rapidly Oscillating Coefficients [J].
Chen, Yanping ;
Tang, Yuelong .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2011, 1 (03) :235-247
[6]   A LEGENDRE-GALERKIN SPECTRAL METHOD FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY STOKES EQUATIONS [J].
Chen, Yanping ;
Huang, Fenglin ;
Yi, Nianyu ;
Liu, Wenbin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) :1625-1648
[7]   Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems [J].
Chen, Yanping ;
Huang, Yunqing ;
Liu, Wenbin ;
Yan, Ningning .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) :382-403
[8]  
Chen ZM, 2003, MATH COMPUT, V72, P541, DOI 10.1090/S0025-5718-02-01441-2
[9]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems, DOI DOI 10.1137/1.9780898719208
[10]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9