Optimum Parameter Selection in Sparse Reconstruction of Frequency-Domain Optical-Coherence Tomography Signals

被引:0
|
作者
Krishnan, Sunder Ram [1 ]
Seelamantula, Chandra Sekhar [2 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Indian Inst Sci, Dept Elect Engn, Bangalore 560012, Karnataka, India
关键词
Frequency-domain optical-coherence tomography; Iteratively reweighted least squares; l(1) minimization; Signal reconstruction;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.
引用
收藏
页码:200 / 203
页数:4
相关论文
共 50 条
  • [31] Three-dimensional imaging of fibrous cap by frequency-domain optical coherence tomography
    Bezerra, Hiram G.
    Attizzani, Guilherme F.
    Costa, Marco A.
    CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2013, 81 (03) : 547 - 549
  • [32] Full-field time-encoded frequency-domain optical coherence tomography
    Povazay, Boris
    Unterhuber, Angelika
    Hermann, Boris
    Sattmann, Harald
    Arthaber, Holger
    Drexler, Wolfgang
    OPTICS EXPRESS, 2006, 14 (17): : 7661 - 7669
  • [33] Detecting Glaucoma With Visual Fields Derived From Frequency-Domain Optical Coherence Tomography
    Zhang, Xian
    Raza, Ali S.
    Hood, Donald C.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (05) : 3289 - 3296
  • [34] Assessing the efficacy of saline flush in frequency-domain optical coherence tomography for intracoronary imaging
    Kimura, Masahiro
    Takeda, Teruki
    Tsujino, Yasushi
    Matsumoto, Yuichi
    Yamaji, Masayuki
    Sakaguchi, Tomoko
    Maeda, Keiko
    Mabuchi, Hiroshi
    Murakami, Tomoyuki
    HEART AND VESSELS, 2024, 39 (04) : 310 - 318
  • [35] Frequency-domain Optical Coherence Tomography Findings of Population With High Skin Auto Fluorescence
    Fujino, Yusuke
    Tahara, Satoko
    Naganum, Toru
    Yabushita, Hiroto
    Wang, Wei
    Nakamura, Sunao
    CIRCULATION, 2015, 132
  • [36] Assessing the efficacy of saline flush in frequency-domain optical coherence tomography for intracoronary imaging
    Masahiro Kimura
    Teruki Takeda
    Yasushi Tsujino
    Yuichi Matsumoto
    Masayuki Yamaji
    Tomoko Sakaguchi
    Keiko Maeda
    Hiroshi Mabuchi
    Tomoyuki Murakami
    Heart and Vessels, 2024, 39 : 310 - 318
  • [37] Computational-imaging-based optical coherence tomography in time- and frequency-domain
    Du, Mengqi
    Eikema, Kjeld S. E.
    Witte, Stefan
    OSA CONTINUUM, 2019, 2 (11): : 3141 - 3152
  • [38] Frequency-domain reconstruction of signals in electrical bioimpedance spectroscopy
    Paterno, Aleksander S.
    Stiz, Rodrigo A.
    Bertemes-Filho, Pedro
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2009, 47 (10) : 1093 - 1102
  • [39] Frequency-domain reconstruction of signals in electrical bioimpedance spectroscopy
    Aleksander S. Paterno
    Rodrigo A. Stiz
    Pedro Bertemes-Filho
    Medical & Biological Engineering & Computing, 2009, 47 : 1093 - 1102
  • [40] Adaptive frequency-domain regularization for sparse-data tomography
    Kalke, Martti
    Siltanen, Samuli
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (07) : 1099 - 1124