Asymmetric dynamics of edge exchange spin waves in honeycomb nanoribbons with zigzag and bearded edge boundaries

被引:7
作者
Ghader, D. [1 ]
Khater, A. [2 ,3 ]
机构
[1] Amer Univ Middle East, Coll Engn & Technol, Egaila, Kuwait
[2] Jan Dlugosz Univ Czestochowa, Inst Phys, Dept Theoret Phys, Am Armii Krajowej 13-15, Czestochowa, Poland
[3] Univ Maine, Dept Phys, F-72085 Le Mans, France
关键词
ON-SURFACE SYNTHESIS; MAGNETIC-ANISOTROPY; GRAPHENE; MODES; MULTILAYERS; MONOLAYER; FERROMAGNETISM; POLARITONS; FILMS;
D O I
10.1038/s41598-019-42742-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report on the theoretical prediction of asymmetric edge spin waves, propagating in opposite directions at the boundaries of antiferromagnetic honeycomb nanoribbons with zigzag and bearded edges. The simultaneous propagation of edge spin waves along the same direction on both edges of the nanoribbons is forbidden. These asymmetric exchange spin waves at the edge boundaries are analogous to the nonreciprocal surface spin waves reported in magnetic thin films. Their existence is related to the nontrivial symmetry underlying these nanoribbons types. The discretized bulk and the edge exchange spin waves are calculated for the long wavelength part of the nanoribbon Brillouin zone (BZ), using the classical field spin wave theory and notably appropriate boundary conditions. In the absence of an external magnetic field in our study, the asymmetric edge spin waves propagate with equal frequencies and along opposite directions. The edge spin waves are characterized by linear dispersion relations for magnetically isotropic nanoribbons. For magnetically anisotropic nanoribbons, our calculations show that the energy gap between the edge and bulk spin waves is enhanced for both types of zigzag and bearded nanoribbons. The large energy gap separates the edge modes from overlapping the bulk ones. Also, we explain why our results for anisotropic zigzag nanoribbons go beyond previous studies based on a quantum approach in the linear spin wave approximation.
引用
收藏
页数:11
相关论文
共 58 条
[1]  
Abou Ghantous M, 2002, J MAGN MAGN MATER, V248, P85, DOI 10.1016/S0304-8853(02)00186-5
[2]   SURFACE-POLARITONS ON ANTIFERROMAGNETIC SUPERLATTICES [J].
ALMEIDA, NS ;
TILLEY, DR .
SOLID STATE COMMUNICATIONS, 1990, 73 (01) :23-27
[3]   Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates [J].
Bonilla, Manuel ;
Kolekar, Sadhu ;
Ma, Yujing ;
Diaz, Horacio Coy ;
Kalappattil, Vijaysankar ;
Das, Raja ;
Eggers, Tatiana ;
Gutierrez, Humberto R. ;
Manh-Huong Phan ;
Batzill, Matthias .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :289-+
[4]   MAGNETIC MULTILAYERS - SPIN CONFIGURATIONS, EXCITATIONS AND GIANT MAGNETORESISTANCE [J].
CAMLEY, RE ;
STAMPS, RL .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (23) :3727-3786
[5]   LONG-WAVELENGTH SURFACE SPIN-WAVES ON ANTI-FERROMAGNETS [J].
CAMLEY, RE .
PHYSICAL REVIEW LETTERS, 1980, 45 (04) :283-286
[6]   SURFACE-POLARITONS ON UNIAXIAL ANTIFERROMAGNETS [J].
CAMLEY, RE ;
MILLS, DL .
PHYSICAL REVIEW B, 1982, 26 (03) :1280-1287
[7]   NONRECIPROCAL SURFACE-WAVES [J].
CAMLEY, RE .
SURFACE SCIENCE REPORTS, 1987, 7 (3-4) :103-187
[8]  
Chen YC, 2015, NAT NANOTECHNOL, V10, P156, DOI [10.1038/NNANO.2014.307, 10.1038/nnano.2014.307]
[9]   Spin Nernst Effect of Magnons in Collinear Antiferromagnets [J].
Cheng, Ran ;
Okamoto, Satoshi ;
Xiao, Di .
PHYSICAL REVIEW LETTERS, 2016, 117 (21)
[10]   Spin Waves and Revised Crystal Structure of Honeycomb Iridate Na2IrO3 [J].
Choi, S. K. ;
Coldea, R. ;
Kolmogorov, A. N. ;
Lancaster, T. ;
Mazin, I. I. ;
Blundell, S. J. ;
Radaelli, P. G. ;
Singh, Yogesh ;
Gegenwart, P. ;
Choi, K. R. ;
Cheong, S. -W. ;
Baker, P. J. ;
Stock, C. ;
Taylor, J. .
PHYSICAL REVIEW LETTERS, 2012, 108 (12)