Roles and opportunities for machine learning in organic molecular crystal structure prediction and its applications

被引:8
|
作者
Clements, Rebecca J. [1 ]
Dickman, Joshua [1 ]
Johal, Jay [1 ]
Martin, Jennie [1 ]
Glover, Joseph [1 ]
Day, Graeme M. [1 ]
机构
[1] Univ Southampton, Sch Chem, Southampton, Hants, England
基金
欧洲研究理事会;
关键词
CHEMICAL SPACE; LANDSCAPES; DISCOVERY; REPRESENTATION; GENERATION; ALGORITHM; DESIGN; SYSTEM; SMILES; SIZE;
D O I
10.1557/s43577-022-00434-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The field of crystal structure prediction (CSP) has changed dramatically over the past decade and methods now exist that will strongly influence the way that new materials are discovered, in areas such as pharmaceutical materials and the discovery of new, functional molecular materials with targeted properties. Machine learning (ML) methods, which are being applied in many areas of chemistry, are starting to be explored for CSP. This article discusses the areas where ML is expected to have the greatest impact on CSP and its applications: improving the evaluation of energies; analyzing the landscapes of predicted structures and for the identification of promising molecules for a target property.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
  • [1] Roles and opportunities for machine learning in organic molecular crystal structure prediction and its applications
    Rebecca J. Clements
    Joshua Dickman
    Jay Johal
    Jennie Martin
    Joseph Glover
    Graeme M. Day
    MRS Bulletin, 2022, 47 : 1054 - 1062
  • [2] Multifidelity Statistical Machine Learning for Molecular Crystal Structure Prediction
    Egorova, Olga
    Hafizi, Roohollah
    Woods, David C.
    Day, Graeme M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (39): : 8065 - 8078
  • [3] Accelerated Organic Crystal Structure Prediction with Genetic Algorithms and Machine Learning
    Kadan, Amit
    Ryczko, Kevin
    Wildman, Andrew
    Wang, Rodrigo
    Roitberg, Adrian
    Yamazaki, Takeshi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (24) : 9388 - 9402
  • [4] Data-efficient machine learning for molecular crystal structure prediction
    Wengert, Simon
    Csanyi, Gabor
    Reuter, Karsten
    Margraf, Johannes T.
    CHEMICAL SCIENCE, 2021, 12 (12) : 4536 - 4546
  • [5] Applications of crystal structure prediction - organic molecular structures: general discussion
    Adjiman, Claire S.
    Brandenburg, Jan Gerit
    Braun, Doris E.
    Cole, Jason
    Collins, Christopher
    Cooper, Andrew I.
    Cruz-Cabeza, Aurora J.
    Day, Graeme M.
    Dudek, Marta
    Hare, Alan
    Iuzzolino, Luca
    McKay, David
    Mitchell, John B. O.
    Mohamed, Sharmarke
    Neelamraju, Sridhar
    Neumann, Marcus
    Nilsson Lill, Sten
    Nyman, Jonas
    Oganov, Artem R.
    Price, Sarah L.
    Pulido, Angeles
    Reutzel-Edens, Susan
    Rietveld, Ivo
    Ruggiero, Michael T.
    Schon, J. Christian
    Tsuzuki, Seiji
    van den Ende, Joost
    Woollam, Grahame
    Zhu, Qiang
    FARADAY DISCUSSIONS, 2018, 211 : 493 - 539
  • [6] Systematically identifying the best chemical representation for machine learning with applications in crystal structure prediction
    McDonagh, David
    Skylaris, Chris-Kriton
    Day, Graeme
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [7] Review on Machine Learning Accelerated Crystal Structure Prediction
    Luo X.
    Wang Z.
    Gao P.
    Zhang W.
    Lv J.
    Wang Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (02): : 552 - 560
  • [8] Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes
    Butler, Patrick W. V.
    Hafizi, Roohollah
    Day, Graeme M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (05): : 945 - 957
  • [9] A Hybrid Machine Learning Approach for Structure Stability Prediction in Molecular Co-crystal Screenings
    Wengert, Simon
    Csanyi, Gabor
    Reuter, Karsten
    Margraf, Johannes T.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 4586 - 4593
  • [10] Geometric Deep Learning for Molecular Crystal Structure Prediction
    Kilgour, Michael
    Rogal, Jutta
    Tuckerman, Mark
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4743 - 4756