Geldanamycin-Derived HSP90 Inhibitors Are Synthetic Lethal with NRF2

被引:33
作者
Baird, Liam [1 ]
Suzuki, Takafumi [1 ]
Takahashi, Yushi [1 ]
Hishinuma, Eiji [2 ]
Saigusa, Daisuke [1 ,2 ]
Yamamoto, Masayuki [1 ,2 ]
机构
[1] Tohoku Univ, Grad Sch Med, Dept Med Biochem, Sendai, Miyagi, Japan
[2] Tohoku Univ, Tohoku Med Megabank Org, Sendai, Miyagi, Japan
关键词
NRF2; KEAP1; oxidative stress; cancer; synthetic lethal; Nfe2I2; RETASPIMYCIN HYDROCHLORIDE IPI-504; PROTEIN; 90; INHIBITOR; PHASE-I; HEPATOCELLULAR-CARCINOMA; GENOMIC CHARACTERIZATION; OXIDATIVE STRESS; CANCER-CELLS; KEAP1; MUTATIONS; TRIAL;
D O I
10.1128/MCB.00377-20
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activating mutations in KEAP1-NRF2 are frequently found in tumors of the lung, esophagus, and liver, where they are associated with aggressive growth, resistance to cancer therapies, and low overall survival. Despite the fact that NRF2 is a validated driver of tumorigenesis and chemotherapeutic resistance, there are currently no approved drugs which can inhibit its activity. Therefore, there is an urgent clinical need to identify NRF2-selective cancer therapies. To this end, we developed a novel synthetic lethal assay, based on fluorescently labeled isogenic wild-type and Keap1 knockout cell lines, in order to screen for compounds which selectively kill cells in an NRF2-dependent manner. Through this approach, we identified three compounds based on the geldanamycin scaffold which display synthetic lethality with NRF2. Mechanistically, we show that products of NRF2 target genes metabolize the quinone-containing geldanamycin compounds into more potent HSP90 inhibitors, which enhances their cytotoxicity while simultaneously restricting the synthetic lethal effect to cells with aberrant NRF2 activity. As all three of the geldanamyc-inderived compounds have been used in clinical trials, they represent ideal candidates for drug repositioning to target the currently untreatable NRF2 activity in cancer.
引用
收藏
页数:22
相关论文
共 57 条
[1]   The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway [J].
Baird, Liam ;
Yamamoto, Masayuki .
MOLECULAR AND CELLULAR BIOLOGY, 2020, 40 (13)
[2]   Synergy between the KEAP1/NRF2 and PI3K Pathways Drives Non-Small-Cell Lung Cancer with an Altered Immune Microenvironment [J].
Best, Sarah A. ;
De Souza, David P. ;
Kersbergen, Ariena ;
Policheni, Antonia N. ;
Dayalan, Saravanan ;
Tull, Dedreia ;
Rathi, Vivek ;
Gray, Daniel H. ;
Ritchie, Matthew E. ;
McConville, Malcolm J. ;
Sutherland, Kate D. .
CELL METABOLISM, 2018, 27 (04) :935-+
[3]  
Cancer Genome Atlas Research Network, 2018, Nature, V559, pE12, DOI [10.1038/nature13385, 10.1038/s41586-018-0228-6]
[4]   Interactions of quinones with thioredoxin reductase -: A challenge to the antioxidant role of the mammalian selenoprotein [J].
Cenas, N ;
Nivinskas, H ;
Anusevicius, Z ;
Sarlauskas, J ;
Lederer, F ;
Arnér, ESJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (04) :2583-2592
[5]   Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis [J].
De Nicola, Gina M. ;
Karreth, Florian A. ;
Humpton, Timothy J. ;
Gopinathan, Aarthi ;
Wei, Cong ;
Frese, Kristopher ;
Mangal, Dipti ;
Yu, Kenneth H. ;
Yeo, Charles J. ;
Calhoun, Eric S. ;
Scrimieri, Francesca ;
Winter, Jordan M. ;
Hruban, Ralph H. ;
Iacobuzio-Donahue, Christine ;
Kern, Scott E. ;
Blair, Ian A. ;
Tuveson, David A. .
NATURE, 2011, 475 (7354) :106-U128
[6]   Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants [J].
Dinkova-Kostova, AT ;
Holtzclaw, WD ;
Cole, RN ;
Itoh, K ;
Wakabayashi, N ;
Katoh, Y ;
Yamamoto, M ;
Talalay, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) :11908-11913
[7]   Systematic identification of genomic markers of drug sensitivity in cancer cells [J].
Garnett, Mathew J. ;
Edelman, Elena J. ;
Heidorn, Sonja J. ;
Greenman, Chris D. ;
Dastur, Anahita ;
Lau, King Wai ;
Greninger, Patricia ;
Thompson, I. Richard ;
Luo, Xi ;
Soares, Jorge ;
Liu, Qingsong ;
Iorio, Francesco ;
Surdez, Didier ;
Chen, Li ;
Milano, Randy J. ;
Bignell, Graham R. ;
Tam, Ah T. ;
Davies, Helen ;
Stevenson, Jesse A. ;
Barthorpe, Syd ;
Lutz, Stephen R. ;
Kogera, Fiona ;
Lawrence, Karl ;
McLaren-Douglas, Anne ;
Mitropoulos, Xeni ;
Mironenko, Tatiana ;
Thi, Helen ;
Richardson, Laura ;
Zhou, Wenjun ;
Jewitt, Frances ;
Zhang, Tinghu ;
O'Brien, Patrick ;
Boisvert, Jessica L. ;
Price, Stacey ;
Hur, Wooyoung ;
Yang, Wanjuan ;
Deng, Xianming ;
Butler, Adam ;
Choi, Hwan Geun ;
Chang, JaeWon ;
Baselga, Jose ;
Stamenkovic, Ivan ;
Engelman, Jeffrey A. ;
Sharma, Sreenath V. ;
Delattre, Olivier ;
Saez-Rodriguez, Julio ;
Gray, Nathanael S. ;
Settleman, Jeffrey ;
Futreal, P. Andrew ;
Haber, Daniel A. .
NATURE, 2012, 483 (7391) :570-U87
[8]   Integration of the Unfolded Protein and Oxidative Stress Responses through SKN-1/Nrf [J].
Glover-Cutter, Kira M. ;
Lin, Stephanie ;
Blackwell, Keith .
PLOS GENETICS, 2013, 9 (09)
[9]   Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer [J].
Goetz, MP ;
Toft, D ;
Reid, J ;
Ames, M ;
Stensgard, B ;
Safgren, S ;
Adjei, AA ;
Sloan, J ;
Atherton, P ;
Vasile, V ;
Salazaar, S ;
Adjei, A ;
Croghan, G ;
Erlichman, C .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (06) :1078-1087
[10]   Modulation of oxidative stress as an anticancer strategy [J].
Gorrini, Chiara ;
Harris, Isaac S. ;
Mak, Tak W. .
NATURE REVIEWS DRUG DISCOVERY, 2013, 12 (12) :931-947