Shadowing in actions of some Abelian groups

被引:27
作者
Pilyugin, SY [1 ]
Tikhomirov, SB [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198904, Russia
关键词
pseudotrajectory; shadowing; group action; hyperbolicity; expansivity;
D O I
10.4064/fm179-1-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study shadowing properties of continuous actions of the groups Z(p) and Z(p) x R-p. Necessary and sufficient conditions are given under which a linear action of Z(p) on C-m has a Lipschitz shadowing property.
引用
收藏
页码:83 / 96
页数:14
相关论文
共 50 条
[41]   Norm formulas for finite groups and induction from elementary abelian subgroups [J].
Aljadeff, Eli ;
Kassel, Christian .
JOURNAL OF ALGEBRA, 2006, 303 (02) :677-706
[42]   Faces of simplices of invariant measures for actions of amenable groups [J].
Frej, Bartosz ;
Huczek, Dawid .
MONATSHEFTE FUR MATHEMATIK, 2018, 185 (01) :61-80
[43]   Actions of totally disconnected groups and equivariant singular homology [J].
Illman, Soren .
TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (17) :2659-2678
[44]   Faces of simplices of invariant measures for actions of amenable groups [J].
Bartosz Frej ;
Dawid Huczek .
Monatshefte für Mathematik, 2018, 185 :61-80
[45]   Actions of solvable algebraic groups on central simple algebras [J].
Vonessen, Nikolaus .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (05) :413-427
[46]   Dynamical behavior of additive cellular automata over finite abelian groups [J].
Dennunzio, Alberto ;
Formenti, Enrico ;
Grinberg, Darij ;
Margara, Luciano .
THEORETICAL COMPUTER SCIENCE, 2020, 843 :45-56
[47]   TWO SIMULTANEOUS ACTIONS OF BIG MAPPING CLASS GROUPS [J].
Bavard, Juliette ;
Walker, Alden .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (11) :7603-7650
[48]   Actions of Solvable Algebraic Groups on Central Simple Algebras [J].
Nikolaus Vonessen .
Algebras and Representation Theory, 2007, 10 :413-427
[49]   ON THE ORBITS OF SOME METABELIAN GROUPS [J].
SHARMA, K. A. R. N. I. K. A. ;
BHAT, V. I. J. A. Y. K. U. M. A. R. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (03) :799-807
[50]   ERGODIC THEORY, ABELIAN GROUPS AND POINT PROCESSES INDUCED BY STABLE RANDOM FIELDS [J].
Roy, Parthanil .
ANNALS OF PROBABILITY, 2010, 38 (02) :770-793