Shadowing in actions of some Abelian groups

被引:27
作者
Pilyugin, SY [1 ]
Tikhomirov, SB [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198904, Russia
关键词
pseudotrajectory; shadowing; group action; hyperbolicity; expansivity;
D O I
10.4064/fm179-1-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study shadowing properties of continuous actions of the groups Z(p) and Z(p) x R-p. Necessary and sufficient conditions are given under which a linear action of Z(p) on C-m has a Lipschitz shadowing property.
引用
收藏
页码:83 / 96
页数:14
相关论文
共 50 条
[21]   Orbit codes of finite Abelian groups and lattices [J].
Mesnager, Sihem ;
Raja, Rameez .
DISCRETE MATHEMATICS, 2024, 347 (05)
[22]   Abelian quotient of subgroups of solvable linear groups [J].
Yang, Yong .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (12) :5444-5448
[23]   Arithmetic structure of fundamental groups and actions of semisimple Lie groups [J].
Lubotzky, A ;
Zimmer, RJ .
TOPOLOGY, 2001, 40 (04) :851-869
[24]   Mixing Actions of Locally Compact Groups [J].
Tikhonov, S. V. .
MATHEMATICAL NOTES, 2025, 117 (3-4) :617-628
[25]   Minimal models for actions of amenable groups [J].
Frej, Bartosz ;
Huczek, Dawid .
GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (02) :567-583
[26]   Equivariant Chow groups for torus actions [J].
M. Brion .
Transformation Groups, 1997, 2 (3) :225-267
[27]   PROJECTIONAL ENTROPY FOR ACTIONS OF AMENABLE GROUPS [J].
Prusik, Michal .
COLLOQUIUM MATHEMATICUM, 2024, 176 (02) :147-157
[28]   Length functions on groups and actions on graphs [J].
Collins, Matthew ;
Martino, Armando .
COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) :2269-2281
[29]   Unitary representations of finite abelian groups realizable by an action [J].
Dolezal, M. .
TOPOLOGY AND ITS APPLICATIONS, 2014, 164 :87-94
[30]   Finiteness for parabolic group actions in classical groups [J].
T. Brüstle ;
G. Röhrle ;
L. Hille .
Archiv der Mathematik, 2001, 76 :81-87