Results on nonlocal stochastic integro-differential equations driven by a fractional Brownian motion

被引:2
作者
Issaka, Louk-Man [1 ]
Diop, Mamadou Abdoul [1 ]
Hmoyed, Hasna [1 ]
机构
[1] Univ Gaston Berger St Louis, Unite Format & Rech Sci Appl & Technol UFR SAT, Dept Math, BP 234, St Louis, Senegal
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
resolvent operators; C-0-semigroup; stochastic functional integro-differential equations; nonlocal condition; fractional Brownian motion; mild solutions; DELAY EVOLUTION-EQUATIONS; MILD SOLUTIONS; EXISTENCE; BEHAVIOR;
D O I
10.1515/math-2020-0063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the existence of mild solutions for a class of non-local stochastic integro- differential equations driven by a fractional Brownian motion with Hurst parameter H epsilon (1/2, 1). Discussions are based on resolvent operators in the sense of Grimmer, stochastic analysis theory and fixed-point criteria. As a final point, an example is given to illustrate the effectiveness of the obtained theory.
引用
收藏
页码:1097 / 1112
页数:16
相关论文
共 35 条
[1]   Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion [J].
Arthi, G. ;
Park, Ju H. ;
Jung, H. Y. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 32 :145-157
[2]   Nonlocal Cauchy problem for delay integrodifferential equations of Sobolev type in Banach spaces [J].
Balachandran, K ;
Park, JY ;
Chandrasekaran, M .
APPLIED MATHEMATICS LETTERS, 2002, 15 (07) :845-854
[3]   Existence of solutions for semilinear neutral stochastic functional differential equations with nonlocal conditions [J].
Balasubramaniam, P. ;
Park, J. Y. ;
Kumar, A. Vincent Antony .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) :1049-1058
[4]  
Balasubramaniam P., 2007, DYN SYST APPL, V16, P713
[5]  
Biagini F, 2008, PROBAB APPL SER, P1
[6]   Existence of Mild Solutions to Stochastic Delay Evolution Equations with a Fractional Brownian Motion and Impulses [J].
Boudaoui, Ahmed ;
Caraballo, Tomas ;
Ouahab, Abdelghani .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2015, 33 (02) :244-258
[7]  
Boufoussi B., 2014, ARXIV14012555
[8]   Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space [J].
Boufoussi, Brahim ;
Hajji, Salah .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (08) :1549-1558
[9]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[10]   The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion [J].
Caraballo, T. ;
Garrido-Atienza, M. J. ;
Taniguchi, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3671-3684