A TRAJECTORY MAP FOR THE PRESSURELESS EULER EQUATIONS

被引:14
作者
Hynd, Ryan [1 ]
机构
[1] Univ Penn, Dept Math, 209 South 33rd St, Philadelphia, PA 19104 USA
关键词
POISSON SYSTEMS; DYNAMICS; EXISTENCE;
D O I
10.1090/tran/8118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the dynamics of a collection of particles that interact pairwise and are restricted to move along the real line. Moreover, we focus on the situation in which particles undergo perfectly inelastic collisions when they collide. The equations of motion are a pair of partial differential equations for the particles' mass distribution and local velocity. We show that solutions of this system exist for given initial conditions by rephrasing these equations in Lagrangian coordinates and then by solving for the associated trajectory map.
引用
收藏
页码:6777 / 6815
页数:39
相关论文
共 24 条
  • [1] Ambrosio L, 2008, LECT MATH, P1
  • [2] [Anonymous], STUDIES APPL MATH
  • [3] [Anonymous], 1993, Jpn. J. Ind. Appl. Math.
  • [4] Bolley F, 2008, LECT NOTES MATH, V1934, P371
  • [5] Sticky particle dynamics with interactions
    Brenier, Y.
    Gangbo, W.
    Savare, G.
    Westdickenberg, M.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (05): : 577 - 617
  • [6] Sticky particles and scalar conservation laws
    Brenier, Y
    Grenier, E
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) : 2317 - 2328
  • [7] A SIMPLE PROOF OF GLOBAL EXISTENCE FOR THE 1D PRESSURELESS GAS DYNAMICS EQUATIONS
    Cavalletti, Fabio
    Sedjro, Marc
    Westdickenberg, Michael
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) : 66 - 79
  • [8] Solutions of Euler-Poisson equations for gaseous stars
    Deng, YB
    Liu, TP
    Yang, T
    Yao, ZA
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) : 261 - 285
  • [9] Probabilistic interpretation of sticky particle model
    Dermoune, A
    [J]. ANNALS OF PROBABILITY, 1999, 27 (03) : 1357 - 1367
  • [10] Evans L. C., 2015, TEXTB MATH