Prediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading)

被引:39
|
作者
Mohanty, J. R. [2 ]
Verma, B. B. [2 ]
Ray, P. K. [1 ]
机构
[1] Natl Inst Technol, Dept Mech Engn, Rourkela 769008, India
[2] Natl Inst Technol, Dept Met & Mat Engn, Rourkela 769008, India
关键词
Crack driving forces; Constant amplitude loading; Exponential model; Fatigue crack growth rate; DRIVING-FORCE PARAMETER;
D O I
10.1016/j.ijfatigue.2008.07.015
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the present investigation an attempt has been made to introduce a life prediction methodology by adopting an 'Exponential Model' that can be used without integration of fatigue Crack growth Fate curve. The predicted results are compared with experimental crack growth data obtained for 7020-T7 and 2024-T3 aluminum alloy specimens under constant amplitude loading. It is observed that the results obtained from this model are in good agreement with experimental data and cover both stage-II and stage-III of fatigue crack growth curve. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:418 / 424
页数:7
相关论文
共 32 条
  • [21] Comparative Study of Phenomenological Residual Strength Models for Composite Materials Subjected to Fatigue: Predictions at Constant Amplitude (CA) Loading
    D'Amore, Alberto
    Grassia, Luigi
    MATERIALS, 2019, 12 (20)
  • [22] Effect of low-temperature overload on fatigue crack growth retardation and prediction of post overload fatigue life
    Sahu, Vaneshwar Kr.
    Kumar, J. K. S. Anil
    Mohanty, J. R.
    Verma, B. B.
    Ray, P. K.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2014, 33 (01) : 100 - 106
  • [23] The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel - Part I: computer simulation
    Shiue, RK
    Chang, CT
    Young, MC
    Tsay, LW
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 364 (1-2): : 101 - 108
  • [24] Numerical simulation of fatigue crack growth rate and crack retardation due to an overload using a cohesive zone model
    Silitonga, Sarmediran
    Maljaars, Johan
    Soetens, Frans
    Snijder, Hubertus H.
    11TH INTERNATIONAL FATIGUE CONGRESS, PTS 1 AND 2, 2014, 891-892 : 777 - +
  • [25] Describing fatigue crack growth and load ratio effects in Al 2524 T3 alloy with an enhanced exponential model
    Baptista, C. A. R. P.
    Adib, A. M. L.
    Torres, M. A. S.
    Pastoukhov, V. A.
    MECHANICS OF MATERIALS, 2012, 51 : 66 - 73
  • [26] Prediction of residual fatigue life under interspersed mixed-mode (I and II) overloads by Artificial Neural Network
    Mohanty, J. R.
    Parhi, D. R. K.
    Ray, P. K.
    Verma, B. B.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2009, 32 (12) : 1020 - 1031
  • [27] Fatigue crack growth: Validation of the Kmax-AK approach using the GTN damage model
    Sergio, E. R.
    Antunes, F. V.
    Kujawski, D.
    Neto, D. M.
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 176
  • [28] Prediction of Fatigue Crack Growth Rate in Aircraft Aluminum Alloys using Radial Basis Function Neural Network
    Bin Younis, Hassaan
    Kamal, Khurram
    Sheikh, Muhammad Fahad
    Hamza, Amir
    Zafar, Tayyab
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 825 - 830
  • [29] Investigations of fatigue crack growth rate behaviour and life prediction of Si3N4/TiB2 reinforced hybrid metal matrix composites
    Agrawal, Anant Prakash
    Srivastava, Sunil Kumar
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 186
  • [30] A more effective rationalisation of fatigue crack growth rate data for various specimen geometries and stress ratios using the CJP model
    Yang, Bing
    Vasco-Olmo, J. M.
    Diaz, F. A.
    James, M. N.
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 114 : 189 - 197