Multiscale quantum simulation of quantum field theory using wavelets

被引:36
作者
Brennen, Gavin K. [1 ]
Rohde, Peter [2 ]
Sanders, Barry C. [1 ,3 ,4 ]
Singh, Sukhwinder [1 ]
机构
[1] Macquarie Univ, Dept Phys & Astron, Ctr Engn Quantum Syst, N Ryde, NSW 2109, Australia
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst QCIS, Sydney, NSW 2007, Australia
[3] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[4] Canadian Inst Adv Res, Program Quantum Informat Sci, Toronto, ON M5G 1Z8, Canada
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
ALGORITHMS;
D O I
10.1103/PhysRevA.92.032315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A successful approach to understand field theories is to resolve the physics into different length or energy scales using the renormalization group framework. We propose a quantum simulation of quantum field theory which encodes field degrees of freedom in a wavelet basis-a multiscale description of the theory. Since wavelet families can be constructed to have compact support at all resolutions, this encoding allows for quantum simulations to create particle excitations which are local at some chosen scale and provides a natural way to associate observables in the theory to finite-resolution detectors.
引用
收藏
页数:11
相关论文
共 23 条
[1]   Continuous wavelet transform in quantum field theory [J].
Altaisky, M. V. ;
Kaputkina, N. E. .
PHYSICAL REVIEW D, 2013, 88 (02)
[2]   Quantum field theory without divergences [J].
Altaisky, M. V. .
PHYSICAL REVIEW D, 2010, 81 (12)
[3]   Wavelet-Based Quantum Field Theory [J].
Altaisky, Mikhail V. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[4]  
[Anonymous], LECT NOTES COMPUTER
[5]  
[Anonymous], 2008, ARXIV08010342
[6]  
Argüello F, 2009, QUANTUM INF COMPUT, V9, P414
[7]  
Battle G., 1999, Wavelets and Renormalization, V10
[8]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[9]   Squeezing as an irreducible resource [J].
Braunstein, SL .
PHYSICAL REVIEW A, 2005, 71 (05)
[10]  
Brennen G. K., ARXIV14120750