Multiscale asymptotic behavior of a solution of the heat equation on RN
被引:0
作者:
论文数: 引用数:
h-index:
机构:
Cazenave, T
[1
]
Dickstein, F
论文数: 0引用数: 0
h-index: 0
机构:Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, BC 187,4,Pl Jussieu, F-75252 Paris 05, France
Dickstein, F
Weissler, FB
论文数: 0引用数: 0
h-index: 0
机构:Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, BC 187,4,Pl Jussieu, F-75252 Paris 05, France
Weissler, FB
机构:
[1] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, BC 187,4,Pl Jussieu, F-75252 Paris 05, France
[2] Univ Fed Rio de Janeiro, Inst Math, 21944-970 Rio De Janeiro, Brazil
[3] Univ Paris 13, Inst Galilee, LAGA UMR CNRS 7539, 93430 Villetaneuse, France
来源:
CONTRIBUTIONS TO NONLINEAR ANALYSIS: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY
|
2006年
/
66卷
关键词:
heat equation;
asymptotic behavior;
decay rate;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we construct solutions e(t Delta)u of the heat equation on R-N, where u is an element of C-0(R-N), which have nontrivial asymptotic properties on different time scales. More precisely, for all 0 < a < N, we consider the set w(sigma)(u) of limit points in C-0(R-N) as t -> infinity of t(sigma/2) e(t Delta)u(x root t). In particular we show that, given an arbitrary countable set S subset of (0, N), there exists u is an element of C-0 (R-N) such that w(sigma)(u) = C-0(R-N) whenever sigma is an element of S.