Multiscale asymptotic behavior of a solution of the heat equation on RN

被引:0
作者
Cazenave, T [1 ]
Dickstein, F
Weissler, FB
机构
[1] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, BC 187,4,Pl Jussieu, F-75252 Paris 05, France
[2] Univ Fed Rio de Janeiro, Inst Math, 21944-970 Rio De Janeiro, Brazil
[3] Univ Paris 13, Inst Galilee, LAGA UMR CNRS 7539, 93430 Villetaneuse, France
来源
CONTRIBUTIONS TO NONLINEAR ANALYSIS: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY | 2006年 / 66卷
关键词
heat equation; asymptotic behavior; decay rate;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct solutions e(t Delta)u of the heat equation on R-N, where u is an element of C-0(R-N), which have nontrivial asymptotic properties on different time scales. More precisely, for all 0 < a < N, we consider the set w(sigma)(u) of limit points in C-0(R-N) as t -> infinity of t(sigma/2) e(t Delta)u(x root t). In particular we show that, given an arbitrary countable set S subset of (0, N), there exists u is an element of C-0 (R-N) such that w(sigma)(u) = C-0(R-N) whenever sigma is an element of S.
引用
收藏
页码:185 / +
页数:2
相关论文
共 3 条
  • [1] Cazenave T, 2005, PROG NONLIN, V63, P135
  • [2] Cazenave T, 2003, DISCRETE CONT DYN S, V9, P1105
  • [3] CAZENAVE T, IN PRESS J MATH PURE