A balancing domain decomposition by constraints preconditioner for a weakly over-penalized symmetric interior penalty method

被引:15
作者
Brenner, Susanne C. [1 ,2 ]
Park, Eun-Hee
Sung, Li-Yeng
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
non-overlapping domain decomposition; BDDC preconditioner; weakly over-penalized symmetric interior penalty methods; discontinuous Galerkin methods; DISCONTINUOUS GALERKIN APPROXIMATION; FINITE-ELEMENT-METHOD; SCHWARZ PRECONDITIONERS; FETI-DP; ITERATIVE METHODS; ELLIPTIC PROBLEMS; BDDC;
D O I
10.1002/nla.1838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a balancing domain decomposition by constraints preconditioner for a weakly over-penalized symmetric interior penalty method for second-order elliptic problems. We show that the condition number of the preconditioned system satisfies similar estimates as those for conforming finite element methods. Corroborating numerical results are also presented. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:472 / 491
页数:20
相关论文
共 36 条
[1]  
[Anonymous], THESIS COURANT I
[2]  
[Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
[3]  
Antonietti P, 2011, PREPRINT
[4]  
Antonietti PE, 2009, COMMUN COMPUT PHYS, V5, P398
[5]   Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: Non-overlapping case [J].
Antonietti, Paola F. ;
Ayuso, Blanca .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2007, 41 (01) :21-54
[6]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[7]   Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations [J].
Ayuso de Dios, Blanca ;
Zikatanov, Ludmil .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) :4-36
[8]   Two-Level Additive Schwarz Preconditioners for a Weakly Over-Penalized Symmetric Interior Penalty Method [J].
Barker, A. T. ;
Brenner, S. C. ;
Park, E. -H. ;
Sung, L. -Y. .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (01) :27-49
[9]  
BJORSTAD PE, 1991, BIT, V31, P76, DOI 10.1007/BF01952785
[10]  
BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3