Stability conditions on product threefolds of projective spaces and Abelian varieties

被引:11
作者
Koseki, Naoki [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
BOGOMOLOV-GIESEKER INEQUALITY; BIRATIONAL GEOMETRY; D-BRANES;
D O I
10.1112/blms.12132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the original Bogomolov-Gieseker type inequality conjecture for P1xS,P2xC and P1xP1xC, where S is an Abelian surface and C is an elliptic curve. In particular, there exist Bridgeland stability conditions on these threefolds.
引用
收藏
页码:229 / 244
页数:16
相关论文
共 29 条
[1]   Bridgeland-stable moduli spaces for K-trivial surfaces [J].
Arcara, Daniele ;
Bertram, Aaron ;
Lieblich, Max .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :1-38
[2]   The minimal model program for the Hilbert scheme of points on P2 and Bridgeland stability [J].
Arcara, Daniele ;
Bertram, Aaron ;
Coskun, Izzet ;
Huizenga, Jack .
ADVANCES IN MATHEMATICS, 2013, 235 :580-626
[3]   The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds [J].
Bayer, Arend ;
Macri, Emanuele ;
Stellari, Paolo .
INVENTIONES MATHEMATICAE, 2016, 206 (03) :869-933
[4]  
Bayer A, 2014, J ALGEBRAIC GEOM, V23, P693
[5]   MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations [J].
Bayer, Arend ;
Macri, Emanuele .
INVENTIONES MATHEMATICAE, 2014, 198 (03) :505-590
[6]   PROJECTIVITY AND BIRATIONAL GEOMETRY OF BRIDGELAND MODULI SPACES [J].
Bayer, Arend ;
Macri, Emanuele .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (03) :707-752
[7]  
Bayer A, 2014, J ALGEBRAIC GEOM, V23, P117
[8]   THE SPACE OF STABILITY CONDITIONS ON THE LOCAL PROJECTIVE PLANE [J].
Bayer, Arend ;
Macri, Emanuele .
DUKE MATHEMATICAL JOURNAL, 2011, 160 (02) :263-322
[9]  
Bernardara M, 2017, EPIJOURNAL GEOM ALGE, V1
[10]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345