This paper presents new analytical models to estimate the bottomhole pressure (BHP) of a vertical carbon dioxide (CO2) injection well in a radial, homogeneous, horizontal saline formation. The new models include the effects of multiphase flow, CO2 dissolution in formation brine, and near-well drying out on the BHP. CO2 is injected into the formation at a constant rate. The analytical solutions are presented for three types of formation outer boundary conditions: closed boundary, constant-pressure boundary, and infinite-acting formation. The sensitivity of BHP computations to gas relative permeability, retardation factors, and CO2 compressibility is examined. The predictive capability of the analytical models is tested by use of numerical reservoir simulations. The results show a good agreement between the analytical and numerical computations for all three boundary conditions. Variations in gas compressibility, retardation factors, and gas relative permeability in the drying-out zone are found to have moderate effects on BHP computations. It is demonstrated for several hypothetical but realistic cases that the new models can estimate CO2 injectivity reliably.