Defective Autophagy in Parkinson's Disease: Role of Oxidative Stress

被引:109
作者
Janda, Elzbieta [1 ]
Isidoro, Ciro [1 ,2 ]
Carresi, Cristina
Mollace, Vincenzo [1 ,3 ,4 ]
机构
[1] Magna Graecia Univ Catanzaro, Dept Hlth Sci, I-88100 Catanzaro, Italy
[2] Univ Piemonte Orientale Amedeo Avogadro, Dept Hlth Sci, Novara, Italy
[3] San Raffaele Pisana, IRCCS, Rome, Italy
[4] Salus Res Inst, Marinella Di Bruzzano, RC, Italy
关键词
Autophagy; Mitophagy; ROS; Rotenone; Paraquat; MPTP; ACTIVATED PROTEIN-KINASE; PARAQUAT-INDUCED AUTOPHAGY; COMPLEX-I DEFICIENCY; ALPHA-SYNUCLEIN; CELL-DEATH; NITRIC-OXIDE; MITOCHONDRIAL DYSFUNCTION; SUPEROXIDE-DISMUTASE; SUBSTANTIA-NIGRA; BASAL AUTOPHAGY;
D O I
10.1007/s12035-012-8318-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Parkinson's disease (PD) is a paradigmatic example of neurodegenerative disorder with a critical role of oxidative stress in its etiopathogenesis. Genetic susceptibility factors of PD, such as mutations in Parkin, PTEN-induced kinase 1, and DJ-1 as well as the exposure to pesticides and heavy metals, both contribute to altered redox balance and degeneration of dopaminergic neurons in the substantia nigra. Dysregulation of autophagy, a lysosomal-driven process of self degradation of cellular organelles and protein aggregates, is also implicated in PD and PD-related mutations, and environmental toxins deregulate autophagy. However, experimental evidence suggests a complex and ambiguous role of autophagy in PD since either impaired or abnormally upregulated autophagic flux has been shown to cause neuronal loss. Finally, it is generally believed that oxidative stress is a strong proautophagic stimulus. However, some evidence coming from neurobiology as well as from other fields indicate an inhibitory role of reactive oxygen species and reactive nitrogen species on the autophagic machinery. This review examines the scientific evidence supporting different concepts on how autophagy is dysregulated in PD and attempts to reconcile apparently contradictory views on the role of oxidative stress in autophagy regulation. The complex relationship between autophagy and oxidative stress is also considered in the context of the ongoing search for a novel PD therapy.
引用
收藏
页码:639 / 661
页数:23
相关论文
共 209 条
[1]   Bioenergetics and the formation of mitochondrial reactive oxygen species [J].
Adam-Vizi, Vera ;
Chinopoulos, Christos .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2006, 27 (12) :639-645
[2]   Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra [J].
Alam, ZI ;
Jenner, A ;
Daniel, SE ;
Lees, AJ ;
Cairns, N ;
Marsden, CD ;
Jenner, P ;
Halliwell, B .
JOURNAL OF NEUROCHEMISTRY, 1997, 69 (03) :1196-1203
[3]   Neuroprotective properties of resveratrol in different neurodegenerative disorders [J].
Albani, Diego ;
Polito, Letizia ;
Signorini, Alessandra ;
Forloni, Gianluigi .
BIOFACTORS, 2010, 36 (05) :370-376
[4]   LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model [J].
Alegre-Abarrategui, Javier ;
Christian, Helen ;
Lufino, Michele M. P. ;
Mutihac, Ruxandra ;
Venda, Lara Lourenco ;
Ansorge, Olaf ;
Wade-Martins, Richard .
HUMAN MOLECULAR GENETICS, 2009, 18 (21) :4022-4034
[5]   Chaperone-mediated autophagy in protein quality control [J].
Arias, Esperanza ;
Cuervo, Ana Maria .
CURRENT OPINION IN CELL BIOLOGY, 2011, 23 (02) :184-189
[6]   Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons [J].
Barsoum, Mark J. ;
Yuan, Hua ;
Gerencser, Akos A. ;
Liot, Geraldine ;
Kushnareva, Yulia E. ;
Graeber, Simone ;
Kovacs, Imre ;
Lee, Wilson D. ;
Waggoner, Jenna ;
Cui, Jiankun ;
White, Andrew D. ;
Bossy, Blaise ;
Martinou, Jean-Claude ;
Youle, Richard J. ;
Lipton, Stuart A. ;
Ellisman, Mark H. ;
Perkins, Guy A. ;
Bossy-Wetzel, Ella .
EMBO JOURNAL, 2006, 25 (16) :3900-3911
[7]   α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation [J].
Bartels, Tim ;
Choi, Joanna G. ;
Selkoe, Dennis J. .
NATURE, 2011, 477 (7362) :107-U123
[8]   Modulation of intracellular ROS levels by TIGAR controls autophagy [J].
Bensaad, Karim ;
Cheung, Eric C. ;
Vousden, Karen H. .
EMBO JOURNAL, 2009, 28 (19) :3015-3026
[9]   Paraquat and Parkinson's disease [J].
Berry, C. ;
La Vecchia, C. ;
Nicotera, P. .
CELL DEATH AND DIFFERENTIATION, 2010, 17 (07) :1115-1125
[10]   Intersecting pathways to neurodegeneration in Parkinson's disease:: Effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin-proteasome system [J].
Betarbet, R ;
Canet-Aviles, RA ;
Sherer, TB ;
Mastroberardino, PG ;
McLendon, C ;
Kim, JH ;
Lund, S ;
Na, HM ;
Taylor, G ;
Bence, NF ;
Kopito, R ;
Seo, BB ;
Yagi, T ;
Klinefelter, G ;
Cookson, MR ;
Greenamyre, JT .
NEUROBIOLOGY OF DISEASE, 2006, 22 (02) :404-420