Non-invasive in vivo Raman spectroscopy of the skin for diabetes screening

被引:0
作者
Guevara, Edgar [1 ,2 ]
Carlos Torres-Galvan, Juan [2 ]
Ramirez Elias, Miguel G. [3 ]
Luevano-Contreras, Claudia [4 ]
Javier Gonzalez, Francisco [2 ]
机构
[1] CONACYT, Mexico City, DF, Mexico
[2] Univ Autonoma San Luis Potosi, Coordinat Innovat & Applicat Sci & Technol, San Luis Potosi, San Luis Potosi, Mexico
[3] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi, San Luis Potosi, Mexico
[4] Univ Guanajuato, Dept Med Sci, Guanajuato, Mexico
来源
2017 PHOTONICS NORTH (PN) | 2017年
关键词
Raman spectroscopy; diabetes; machine learning;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work describes the application of portable Raman spectroscopy coupled with Artificial Neural Networks (ANN), to discern between diabetic patients and healthy controls, with a high degree of accuracy (Acc=89.7 +/- 6.6%). This technique is relatively low-cost, simple and comfortable for the patient, yielding rapid diagnosis. These features make our method a promising screening tool for identifying type 2 diabetes mellitus (DM2) in a non-invasive and automated fashion.
引用
收藏
页数:1
相关论文
共 4 条
  • [1] Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy
    Combrisson, Etienne
    Jerbi, Karim
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2015, 250 : 126 - 136
  • [2] Learning capability and storage capacity of two-hidden-layer feedforward networks
    Huang, GB
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (02): : 274 - 281
  • [3] World Health Organization, 2016, World health organization
  • [4] Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy
    Zhao, Jianhua
    Lui, Harvey
    McLean, David I.
    Zeng, Haishan
    [J]. APPLIED SPECTROSCOPY, 2007, 61 (11) : 1225 - 1232