Non-invasive in vivo Raman spectroscopy of the skin for diabetes screening
被引:0
作者:
Guevara, Edgar
论文数: 0引用数: 0
h-index: 0
机构:
CONACYT, Mexico City, DF, Mexico
Univ Autonoma San Luis Potosi, Coordinat Innovat & Applicat Sci & Technol, San Luis Potosi, San Luis Potosi, MexicoCONACYT, Mexico City, DF, Mexico
Guevara, Edgar
[1
,2
]
Carlos Torres-Galvan, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma San Luis Potosi, Coordinat Innovat & Applicat Sci & Technol, San Luis Potosi, San Luis Potosi, MexicoCONACYT, Mexico City, DF, Mexico
Carlos Torres-Galvan, Juan
[2
]
Ramirez Elias, Miguel G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi, San Luis Potosi, MexicoCONACYT, Mexico City, DF, Mexico
Ramirez Elias, Miguel G.
[3
]
Luevano-Contreras, Claudia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Guanajuato, Dept Med Sci, Guanajuato, MexicoCONACYT, Mexico City, DF, Mexico
Luevano-Contreras, Claudia
[4
]
Javier Gonzalez, Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma San Luis Potosi, Coordinat Innovat & Applicat Sci & Technol, San Luis Potosi, San Luis Potosi, MexicoCONACYT, Mexico City, DF, Mexico
Javier Gonzalez, Francisco
[2
]
机构:
[1] CONACYT, Mexico City, DF, Mexico
[2] Univ Autonoma San Luis Potosi, Coordinat Innovat & Applicat Sci & Technol, San Luis Potosi, San Luis Potosi, Mexico
[3] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi, San Luis Potosi, Mexico
[4] Univ Guanajuato, Dept Med Sci, Guanajuato, Mexico
来源:
2017 PHOTONICS NORTH (PN)
|
2017年
关键词:
Raman spectroscopy;
diabetes;
machine learning;
D O I:
暂无
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
This work describes the application of portable Raman spectroscopy coupled with Artificial Neural Networks (ANN), to discern between diabetic patients and healthy controls, with a high degree of accuracy (Acc=89.7 +/- 6.6%). This technique is relatively low-cost, simple and comfortable for the patient, yielding rapid diagnosis. These features make our method a promising screening tool for identifying type 2 diabetes mellitus (DM2) in a non-invasive and automated fashion.