Local Boundedness for Vector Valued Minimizers of Anisotropic Functionals

被引:12
作者
Leonetti, Francesco [1 ]
Mascolo, Elvira [2 ]
机构
[1] Univ Aquila, Dipartimento Matemat, I-67100 Laquila, Italy
[2] Univ Florence, Dipartimento Matemat, I-50134 Florence, Italy
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2012年 / 31卷 / 03期
关键词
Regularity; boundedness; minimizer; variational integral; elliptic system; EVERYWHERE-REGULARITY; VARIATIONAL INTEGRALS; HIGHER INTEGRABILITY; CALCULUS; GRADIENT; SYSTEMS;
D O I
10.4171/ZAA/1464
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For variational integrals F(u) = f(Omega) f (x, Du) dx defined on vector valued mappings u : Omega subset of R-N -> R-N, we establish some structure conditions on f that enable us to prove local boundedness for minimizers u is an element of W-1,W-1(Omega; R-N) of F. These structure conditions are satisfied in three remarkable examples: f (x, Du) = g(x, vertical bar Du vertical bar), f (x, Du) = Sigma(n)(j=1) gj(x,vertical bar u(xj)vertical bar) and f (x, Du) = a(x,vertical bar u(x1), ... , u(xn-1))vertical bar) + b(x, vertical bar ux(n)), for suitable convex functions t -> g(x,t), t -> g(j)(x, t), t -> a(x, t) and t -> b(x, t).
引用
收藏
页码:357 / 378
页数:22
相关论文
共 34 条
  • [1] REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2
    ACERBI, E
    FUSCO, N
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) : 115 - 135
  • [2] [Anonymous], 2002, Atti Sem. Mat. Fis. Univ. Modena
  • [3] [Anonymous], 1991, Ric. Mat.
  • [4] [Anonymous], 1977, Theory of Nonlinear Operators (Proc. Fourth Internat. Summer School, Acad. Sci. Berlin, 1975), in: Abh. Akad. Wiss. DDR Abt. Math.-Natur.-Tech. Jahrgang 1977
  • [5] [Anonymous], 1968, Boll. Unione Mat. Ital.
  • [6] Apushkinskaya D., 2010, J. Math. Sci. (N. Y.), V164, P345, DOI DOI 10.1007/S10958-009-9751-1
  • [7] Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals
    Bildhauer, M.
    Fuchs, M.
    [J]. MANUSCRIPTA MATHEMATICA, 2007, 123 (03) : 269 - 283
  • [8] Variational integrals of splitting-type: higher integrability under general growth conditions
    Bildhauer, M.
    Fuchs, M.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (03) : 467 - 496
  • [9] Local boundedness of minimizers of anisotropic functionals
    Cianchi, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02): : 147 - 168
  • [10] REGULARITY UNDER SHARP ANISOTROPIC GENERAL GROWTH CONDITIONS
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (01): : 67 - 86