Synthesis and Performance of LiFexMn1-xPO4/C as Cathode Material for Lithium Ion Batteries

被引:3
作者
Liu Xuewu [1 ,2 ]
Qin Xusong [2 ]
Wang Xiaojuan [1 ]
Li Xin [1 ]
Chen Shen [2 ]
机构
[1] Dalian Univ Technol, Sch Chem Machinery, Dalian 116024, Peoples R China
[2] Guangzhou HKUST Fok Ying Tung Res Inst, Ctr Green Prod & Proc Technol, Guangzhou 511458, Guangdong, Peoples R China
来源
JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION | 2015年 / 30卷 / 04期
基金
中国国家自然科学基金;
关键词
LiMnPO4; Fe doping; solid-state reaction route; phenolic resin; PARTICLE-SIZE; FE;
D O I
10.1007/s11595-015-1206-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
LiFexMn1-xPO4/C composites were synthesized by a solid-state reaction route using phenolic resin as both reducing agent and carbon source. The effect of Fe doping on the crystallinity and electrochemical performance of LiFexMn1-xPO4/C was investigated. The experimental results show that the Fe2+ substitution for Mn2+ will lead to crystal lattice shrinkage of LiFexMn1-xPO4/C particles due to the smaller ionic radii of Fe2+. In the investigated Fe doping range (x = 0 to 0.7), LiFexMn1-xPO4/C (x = 0.4) composites exhibited a maximum discharge capacity of 148.8 mAh/g at 0.1 C while LiFexMn1-xPO4/C (x = 0.7) composite showed the best cycle capability with a capacity retention ratio of 99.0% after 30 cycles at 0.2 C. On the contrary, the LiFexMn1-xPO4/C (x = 0.5) composite performed better trade-off on discharge capacity and capacity retention ratio, 127.2 mAh/g and 94.7% after the first 30 cycles at 0.2 C, respectively, which is more preferred for practical applications.
引用
收藏
页码:655 / 659
页数:5
相关论文
共 12 条
  • [1] Precursor-based synthesis and electrochemical performance of LiMnPO4
    Bramnik, Natalia N.
    Ehrenberg, Helmut
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 464 (1-2) : 259 - 264
  • [2] Local structure in the Li-ion battery cathode material Lix(MnyFe1-y)PO4 for 0 < x ≤ 1 and y=0.0, 0.5 and 1.0
    Burba, Christopher A.
    Frech, Roger
    [J]. JOURNAL OF POWER SOURCES, 2007, 172 (02) : 870 - 876
  • [3] Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials
    Delacourt, C
    Laffont, L
    Bouchet, R
    Wurm, C
    Leriche, JB
    Morcrette, M
    Tarascon, JM
    Masquelier, C
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) : A913 - A921
  • [4] Effect of particle size on LiMnPO4 cathodes
    Drezen, Thierry
    Kwon, Nam-Hee
    Bowen, Paul
    Teerlinck, Ivo
    Isono, Motoshi
    Exnar, Ivan
    [J]. JOURNAL OF POWER SOURCES, 2007, 174 (02) : 949 - 953
  • [5] LiFexMn1-xPO4: A cathode for lithium-ion batteries
    Hong, Jian
    Wang, Feng
    Wang, Xiaoliang
    Graetz, Jason
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (07) : 3659 - 3663
  • [6] The Effect of Particle Size on Phase Stability of the Delithiated LixMnPO4
    Kim, Jongsoon
    Park, Kyu-Young
    Park, Inchul
    Yoo, Jung-Keun
    Seo, Dong-Hwa
    Kim, Sung-Wook
    Kang, Kisuk
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (01) : A55 - A59
  • [7] Carbon Coated LiMnPO4 Nanorods for Lithium Batteries
    Kumar, P. Ramesh
    Venkateswarlu, M.
    Misra, Manjusri
    Mohanty, Amar K.
    Satyanarayana, N.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A227 - A230
  • [8] Synthesis and performance of LiMn0.6Fe0.4PO4/nano-carbon webs composite cathode
    Mi, CH
    Zhang, XG
    Zhao, XB
    Li, HL
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 129 (1-3): : 8 - 13
  • [9] Diffusional mechanism of deintercalation in LiFe1-yMnyPO4 cathode material
    Molenda, J.
    Ojczyk, W.
    Swierczek, K.
    Zajac, W.
    Krok, F.
    Dygas, J.
    Liu, Ru-Shi
    [J]. SOLID STATE IONICS, 2006, 177 (26-32) : 2617 - 2624
  • [10] Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
    Padhi, AK
    Nanjundaswamy, KS
    Goodenough, JB
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) : 1188 - 1194