3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network

被引:7
|
作者
Gonzalez, S. Rosas [1 ]
Sekou, T. Birgui [2 ]
Hidane, M. [2 ]
Tauber, C. [1 ]
机构
[1] Univ Tours, UMR U1253 iBrain, Tours, France
[2] Univ Tours, INSA CVL, 6300 LIFAT EA, Tours, France
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II | 2020年 / 11993卷
关键词
Tumor segmentation; Deep-learning; BraTS; CLASSIFICATION;
D O I
10.1007/978-3-030-46643-5_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative analysis of brain tumors is crucial for surgery planning, follow-up and subsequent radiation treatment of glioma. Finding an automatic and reproducible solution may save time to physicians and contribute to improve overall poor prognosis of glioma patients. In this paper, we present our current BraTS contribution on developing an accurate and robust tumor segmentation algorithm. Our network architecture implements a multiscale input module which has been thought to maximize the extraction of features associated to the multiple image modalities before they are merged in a modified U-Net network avoiding the loss of specific information provided by each modality and improving brain tumor segmentation performance. Our method's current performance on the BraTS 2019 test set is dice scores of 0.775 +/- 0.212, 0.865 +/- 0.133 and 0.789 +/- 0.266 for enhancing tumor, whole tumor and tumor core, respectively with and overall dice of 0.81.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
  • [1] Automatic segmentation of brain tumor in intraoperative ultrasound images using 3D U-Net
    Carton, Francois-Xavier
    Chabanas, Matthieu
    Munkvold, Bodil K. R.
    Reinertsen, Ingerid
    Noble, Jack H.
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [2] Automatic segmentation of nonhuman primate brain structures using 3D U-net
    Li, C.
    Zugaro, A. Galli
    Carr, Z.
    Korszen, S.
    Smith, G.
    Stigall, J.
    Salegio, E. A.
    Zagorchev, L.
    HUMAN GENE THERAPY, 2024, 35 (3-4) : A192 - A193
  • [3] A Hierarchical 3D U-Net for Brain Tumor Substructure Segmentation
    Yang, J.
    Wang, R.
    Weng, Y.
    Chen, L.
    Zhou, Z.
    MEDICAL PHYSICS, 2020, 47 (06) : E568 - E568
  • [4] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [5] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [6] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399
  • [7] Brain Tumor Segmentation from 3D MRI Scans Using U-Net
    Montaha S.
    Azam S.
    Rakibul Haque Rafid A.K.M.
    Hasan M.Z.
    Karim A.
    SN Computer Science, 4 (4)
  • [8] Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
    Ullah, Faizad
    Ansari, Shahab U.
    Hanif, Muhammad
    Ayari, Mohamed Arselene
    Chowdhury, Muhammad Enamul Hoque
    Khandakar, Amith Abdullah
    Khan, Muhammad Salman
    SENSORS, 2021, 21 (22)
  • [9] Automatic Segmentation of Brain Tumor from 3D MR Images Using SegNet, U-Net, and PSP-Net
    Weng, Yan-Ting
    Chan, Hsiang-Wei
    Huang, Teng-Yi
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 226 - 233
  • [10] 3D U-Net for Brain Tumour Segmentation
    Mehta, Raghav
    Arbel, Tal
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 254 - 266