Luminescence dosimetry: Does charge imbalance matter?

被引:13
作者
Autzen, M. [1 ]
Murray, A. S. [2 ]
Guerin, G. [3 ]
Baly, L. [4 ]
Ankjaergaard, C. [1 ]
Bailey, M. [1 ]
Jain, M. [1 ]
Buylaert, J-P. [1 ,2 ]
机构
[1] Tech Univ Denmark, Ctr Nucl Technol, DTU Riso Campus, Roskilde, Denmark
[2] Aarhus Univ, Nord Lab Luminescence Dating, Dept Geosci, Aarhus, Denmark
[3] Univ Bordeaux 3, CNRS, UMR 5060, IRAMAT,CRP2A,Maison Archeol, F-33607 Pessac, France
[4] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba
基金
欧洲研究理事会;
关键词
Geant4; Luminescence; OSL; Charge imbalance; OPTICALLY STIMULATED LUMINESCENCE; DOSE-RATE; QUARTZ; SIMULATION; MODEL; BUILDUP; STORAGE; GRAINS;
D O I
10.1016/j.radmeas.2018.08.001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
We use both modelling and high dose experiments to investigate the effects of charge imbalance on luminescence. Charge entering and leaving irradiated 50 mu m grains is modelled using Geant4 to predict the degree of charge imbalance a grain will experience when exposed to i) the Sr-90/(90) Y beta source of a Rise, TL/OSL reader, ii) a 200 keV electron beam, and iii) the 'infmite-matrix' K-40 beta spectrum. All simulations predict that between 1.4% and 2.9% more electrons enter a grain than leave, resulting in a net negative charge in the grain. The possible effects of this charge imbalance on luminescence production are discussed and experiments designed to test the resulting hypotheses; these involve giving very high doses (hundreds of kGy) to silt-sized quartz grains using low energy electrons (200 keV). Up to 700 kGy, we observe an increase in both luminescence output resulting from these high doses, and in sensitivity; above 700 kGy, both decrease. These observations, together with a slower luminescence decay during stimulation following higher doses, are consistent with the hypothesis of a decrease in hole population as a result of net accumulation of electrons during irradiation.
引用
收藏
页码:26 / 32
页数:7
相关论文
共 39 条
[1]  
Adamiec G., 2004, Geochronometria, V23, P9
[2]   Finding model parameters: Genetic algorithms and the numerical modelling of quartz luminescence [J].
Adamiec, Grzegorz ;
Bluszcz, Andrzej ;
Bailey, Richard ;
Garcia-Talavera, Marta .
RADIATION MEASUREMENTS, 2006, 41 (7-8) :897-902
[3]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[4]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[5]   Charge movement in grains of quartz studied using exo-electron emission [J].
Ankjaergaard, C. ;
Denby, P. M. ;
Murray, A. S. ;
Jain, M. .
RADIATION MEASUREMENTS, 2008, 43 (2-6) :273-277
[6]   Measurement of optically and thermally stimulated electron emission from natural minerals [J].
Ankjaergaard, C. ;
Murray, A. S. ;
Denby, P. M. ;
Botter-Jensen, L. .
RADIATION MEASUREMENTS, 2006, 41 (7-8) :780-786
[7]   Using optically stimulated electrons from quartz for the estimation of natural doses [J].
Ankjaergaard, C. ;
Murray, A. S. ;
Denby, P. M. ;
Jain, M. .
RADIATION MEASUREMENTS, 2009, 44 (03) :232-238
[8]   The effect of backscattering on the beta dose absorbed by individual quartz grains [J].
Autzen, M. ;
Guerin, G. ;
Murray, A. S. ;
Thomsen, K. J. ;
Buylaert, J. -P. ;
Jain, M. .
RADIATION MEASUREMENTS, 2017, 106 :491-497
[9]   Paper I - simulation of dose absorption in quartz over geological timescales and its implications for the precision and accuracy of optical dating [J].
Bailey, RM .
RADIATION MEASUREMENTS, 2004, 38 (03) :299-310
[10]   Towards a general kinetic model for optically and thermally stimulated luminescence of quartz [J].
Bailey, RM .
RADIATION MEASUREMENTS, 2001, 33 (01) :17-45