Macromodeling of Distributed Networks From Frequency-Domain Data Using the Loewner Matrix Approach

被引:43
|
作者
Kabir, Muhammad [1 ]
Khazaka, Roni [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2A7, Canada
关键词
Distributed networks; frequency-domain data; Hamiltonian matrix; Loewner matrices (LMs); matrix format tangential interpolation; S-parameters; time-domain macromodel; vector fitting; vector format tangential interpolation; Y-parameters; TRANSIENT SIMULATION; RATIONAL APPROXIMATION; MULTIPORT SYSTEMS; TIME; IMPLEMENTATION; ALGORITHM;
D O I
10.1109/TMTT.2012.2222915
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, Loewner matrix (LM)-based methods were introduced for generating time-domain macromodels based on frequency-domain measured parameters. These methods were shown to be very efficient and accurate for lumped systems with a large number of ports; however, they were not suitable for distributed transmission-line networks. In this paper, an LM-based approach is proposed for modeling distributed networks. The new method was shown to be efficient and accurate for large-scale distributed networks.
引用
收藏
页码:3927 / 3938
页数:12
相关论文
共 50 条
  • [21] A holistic approach to inversion of frequency-domain airborne EM data
    Brodie, Ross
    Sambridge, Malcolm
    GEOPHYSICS, 2006, 71 (06) : G301 - G312
  • [22] APPROXIMATION OF NONUNIFORM RC-DISTRIBUTED NETWORKS FOR FREQUENCY-DOMAIN AND TIME-DOMAIN COMPUTATIONS
    SINGHAL, K
    VLACH, J
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1972, CT19 (04): : 347 - &
  • [23] A frequency-domain approach to interpolation from a nonuniform grid
    Calvagno, G
    Munson, DC
    SIGNAL PROCESSING, 1996, 52 (01) : 1 - 21
  • [24] Frequency-domain subspace identification using FRF data from arbitrary signals
    Cauberghe, B
    Guillaume, P
    Pintelon, R
    Verboven, P
    JOURNAL OF SOUND AND VIBRATION, 2006, 290 (3-5) : 555 - 571
  • [25] CONVERSION OF FREQUENCY-DOMAIN DATA TO THE TIME DOMAIN
    ULRIKSSON, B
    PROCEEDINGS OF THE IEEE, 1986, 74 (01) : 74 - 77
  • [26] Identification of frequency-domain Volterra model using neural networks
    Stegmayer, G
    Chiotti, O
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 465 - 471
  • [27] Distributed dynamic strain measurement using optical frequency-domain reflectometry
    Zhou, Da-Peng
    Chen, Liang
    Bao, Xiaoyi
    APPLIED OPTICS, 2016, 55 (24) : 6735 - 6739
  • [28] Frequency-domain diffusion adaptation over networks with missing input data
    Peng, Yishu
    Zhang, Sheng
    Zhou, Zhengchun
    SIGNAL PROCESSING, 2025, 226
  • [29] Impact of frequency-domain data representation on recognition performance of neural networks
    Franzen, F.
    Yuan, C.
    Li, Zhong
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 1188 - 1195