Bouncing window for colliding nanoparticles: Role of dislocation generation

被引:13
作者
Nietiadi, Maureen L. [1 ,2 ]
Millan, Emmanuel N. [3 ,4 ]
Bringa, Eduardo M. [5 ,6 ]
Urbassek, Herbert M. [1 ,2 ]
机构
[1] Univ Kaiserslautern, Fachbereich Phys, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Forschungszentrum OPTIMAS, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[3] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina
[4] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
[5] Univ Mendoza, CONICET, RA-5500 Mendoza, Argentina
[6] Univ Mendoza, Fac Ingn, RA-5500 Mendoza, Argentina
关键词
MECHANICAL-PROPERTIES; DUST PARTICLES; DEFORMATION; COLLISION; COMPRESSION; SIMULATION; ADHESIVE; CONTACT; SURFACE; ENERGY;
D O I
10.1103/PhysRevE.99.032904
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Available macroscopic theories-such as the Johnson-Kendall-Roberts (JKR) model-predict spherical particles to stick to each other at small collision velocities v; above the bouncing velocity, v(b), they bounce. We study the details of the bouncing threshold using molecular dynamics simulation for crystalline nanoparticles where atoms interact via the Lennard-Jones potential. We show that the bouncing velocity strongly depends on the nanoparticle orientation during collision; for some orientations, nanoparticles stick at all velocities. The dependence of bouncing on orientation is caused by energy dissipation during dislocation activity. The bouncing velocity decreases with increasing nanoparticle radius in reasonable agreement with JKR theory. For orientations for which bouncing exists, nanoparticles stick again at a higher velocity, the fusion velocity, v(f), such that bouncing only occurs in a finite range of velocities-the bouncing window. The fusion velocity is rather independent of the nanoparticle radius.
引用
收藏
页数:8
相关论文
共 41 条
  • [31] Orientation-dependent properties of nanoparticle impact
    Schoener, Christian
    Poeschel, Thorsten
    [J]. PHYSICAL REVIEW E, 2018, 98 (02)
  • [33] Small nanoparticles, surface geometry and contact forces
    Takato, Yoichi
    Benson, Michael E.
    Sen, Surajit
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2211):
  • [34] Rich collision dynamics of soft and sticky crystalline nanoparticles: Numerical experiments
    Takato, Yoichi
    Benson, Michael E.
    Sen, Surajit
    [J]. PHYSICAL REVIEW E, 2015, 92 (03):
  • [35] Strong plastic deformation and softening of fast colliding nanoparticles
    Takato, Yoichi
    Sen, Surajit
    Lechman, Jeremy B.
    [J]. PHYSICAL REVIEW E, 2014, 89 (03):
  • [36] Tanaka H, 2012, PROG THEOR PHYS SUPP, P101
  • [37] A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres
    Thornton, C
    Ning, ZM
    [J]. POWDER TECHNOLOGY, 1998, 99 (02) : 154 - 162
  • [38] Dissipation and plastic deformation in collisions between metallic nanoparticles
    Tucker, William C.
    Dove, Adrienne R.
    Schelling, Patrick K.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2019, 161 : 215 - 222
  • [39] The coefficient of restitution for the idealized impact of a spherical, nano-scale particle on a rigid plane
    Weir, Graham
    McGavin, Peter
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2093): : 1295 - 1307
  • [40] Molecular dynamics (MD) simulation on the collision of a nano-sized particle onto another nano-sized particle adhered on a flat substrate
    Yi, MY
    Kim, DS
    Lee, JW
    Koplik, J
    [J]. JOURNAL OF AEROSOL SCIENCE, 2005, 36 (12) : 1427 - 1443