While extensive studies have been conducted concerning the formation of detonation waves in various combustible gaseous mixtures under static conditions since the 1950s, there is very little experimental work on simple flowing systems. In this study, experiments on the deflagration to detonation transition (DDT) of a hydrogen-air flow system were carried out to see the effects of tube diameter, equivalence ratio, and flow types in a premixed and non-premixed flow. Tube diameters used were 25, 50, and 100 mm. The premixed experiments show that the larger tube diameter provides a wider range in run-up distance, reduction of L-DDT/D (ratio of the run-up distance, L (DDT) to tube diameter), and expansion of the detonable concentration limit by spreading the cell width. The result of the non-premixed experiments show that similar values of the run-up distance to the premixed experiments are obtained at an equivalence ratio of about 1.0, however, fluctuations of DDT occur near the DDT concentration limit. Under laminar flow conditions at a Reynolds number of less than 2,300, the difference between the two systems could not be observed. However, when the Reynolds number increases towards turbulent conditions, the DDT run-up distance decreases compared to that of static flow conditions.